

Электронные Информационные Системы

ΚΑΤΑΠΟΓ 2023

ОБОРУДОВАНИЕ ВЫСОКОЧАСТОТНЫХ КАНАЛОВ СВЯЗИ ПО ВЫСОКОВОЛЬТНЫМ ЛИНИЯМ ЭЛЕКТРОПЕРЕДАЧИ

Основание компании

1992

1993 - 1996

 Разработка и производство контрольно-измерительных приборов.

1999

• Выпуск промышленных контроллеров КСО.

Первые внедрения программно-технического комплекса сбора и обработки информации «Цитрон».

2005

 Начало производства фильтров присоединения серии ФП.

 Первые внедрения системы автоматизированного управления (САУ) энергообъектами.

2009

 Выпуск аппаратуры дальней автоматической связи энергетики (АДАСЭ-БК) на основе современной элементной базы.

2011

 Разработка и внедрение системы дистанционного управления насосами водозабора (СДУ НВ).

 Первая установка системы автоматического управления насосной станцией на водозаборе КС-11. Комсомольское ЛПУ ООО «Газпром трансгаз Югорск».

2012 - 2013

 На основе оригинальной информационно-управляющей системы «Энергосвязь-ПИЛОН» реализован ряд проектов по мониторингу удаленных (труднодоступных) объектов, расположенных вдоль высоковольтных линий 6 – 10 кВ, с организацией связи по высокочастотному каналу.

2014

 Система дистанционного контроля и управления кранового узла по радиоканалу с автономным питанием «СДКУ-РК» поставлена в опытную эксплуатацию на Далматовском ЛПУ ООО «Газпром трансгаз Екатеринбург».

 Внедрена система дистанционного контроля по радиоканалу параметров контрольных пунктову становки катодной защиты в ООО «Газпром трансгаз Югорск».

 Разработка и производство фильтра присоединения со встроенным шкафом отбора напряжения Фильтр-ШОН.

2019

• Разработка фильтра присоединения универсального

• Разработка и старт производства монолитных высокочастотных заградителей.

Внедрение Т-образного разделительного фильтра в ОРУ 500 кВ Балаковской АЭС.

2021

• Завершен полный комплекс испытаний токоограничивающего реактора.

 Продлена декларация о соответствии токоограничивающих реакторов производства ЗАО «НПП «ЭИС».

• Подана заявка на аттестацию в ПАО «Россети».

2023

 Планируется получение заключения аттестационной комиссии ПАО Россети на сухие токоограничивающие реакторы. 1998

 Производство первых ВЧ-заградителей серии ВЗ на номинальные токи 630, 1250, 2000 А.

2001

Выпуск элементов настройки для ВЧ-заградителей.

2008

 Разработка и внедрение комплекса телефонной связи по вдольтрассовым ЛЭП 10 кВ.

2010

 Производство шкафов отбора напряжения (ШОН) и полосовых разделительных фильтров (в дополнение к одночастотным разделительным фильтрам).

2012

 Работа компании признана соответствующей требованиям стандарта ISO 9901:2008 в отношении разработки и производства, монтажа и пусконаладки приборов, систем контроля и управления технологическими процессами.

2013

 Разработка и внедрение автоматизированной системы коррозионного мониторинга магистральных газопроводов по высоковольтной линии электропередач (АСКМ-ВЛ).

2016

 Разработка и внедрение первого Т-образного разделительного фильтра в ОРУ 500 кВ ПС 500 кВ Куйбышевская (МЭС Волги).

2017

 Внедрение второго Т-образного разделительного фильтра в ОРУ 500 кВ ПС 500 кВ Куйбышевская (МЭС Волги).

2018

 Запуск производства сухих токоограничивающих реакторов.

 Разработка и начало производства инновационного высокочастотного заградителя.

2020

 Проведение испытаний заградителей нового типа, разработан универсальный эквивалент реактора заградителя нового типа.

2022

 Начало выпуска монолитного токоограничивающего реактора.

Внедрение систем контроля состояния оборудования ВЧ-присоединения.

О КОМПАНИИ

ЗАО «Научно-производственное предприятие «Электронные информационные системы» более 30 лет успешно работает на рынке. Деятельность компании развивается в двух взаимосвязанных направлениях: автоматизация технологических процессов и разработка ВЧ-оборудования присоединения и обработки.

Предприятие является ведущим в России разработчиком и производителем оборудования присоединения и обработки, предназначенного для организации высокочастотных каналов связи и телемеханики, релейной защиты и противоаварийной автоматики по высоковольтным линиям электропередачи (в т.ч. ВЛ 6–10 кВ).

Высокочастотные каналы связи, организованные по высоковольтным линиям, являются одним из основных средств передачи информации в энергетических системах. Обобщенный пример схемы организации высокочастотных каналов (ВЧ-каналов) представлен в каталоге на странице 4. ВЛ от 35

до 1150 кВ, как правило, оснащаются системой релейной защиты (РЗ), противоаварийной автоматики (ПА). При необходимости, организуются дополнительные каналы высокочастотной связи, по которым передаются все виды информации, требуемой для управления работой энергосистем, как в нормальных режимах, так и в аварийных ситуациях:

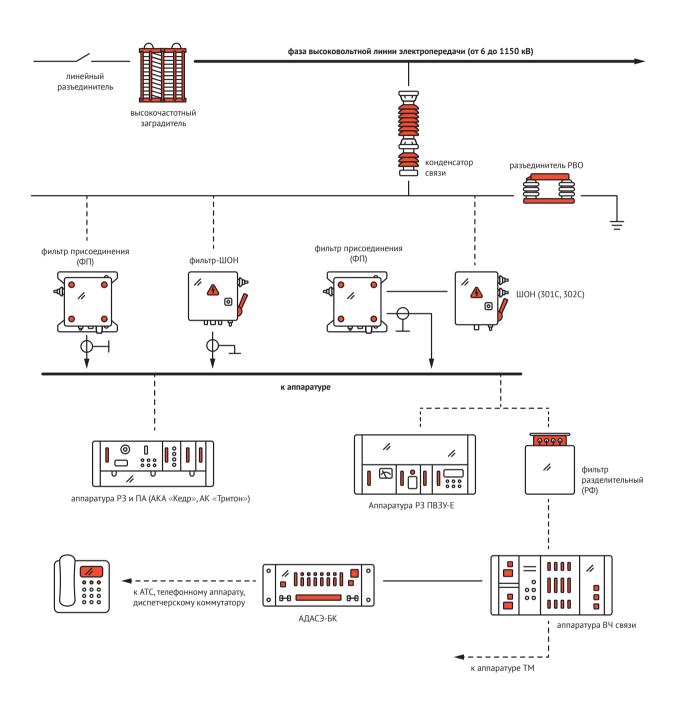
- телефонная связь для обеспечения оперативно-диспетчерского и административно-технического управления:
- сигналы телемеханики;
- данные автоматизированной системы коммерческого учета электроэнергии (АСКУЭ);
- межмашинный обмен для обеспечения работы автоматизированной системы управления (АСУ) и автоматизированной системы управления технологическими процессами (АСУ ТП);
- факсимиле, электронная почта.

Значительная часть аппаратуры, используемой в России для построения ВЧ-каналов всех типов, выпущена до 1980 года, морально и физически устарела и не отвечает современным требованиям. Необходимо проведение модернизации системы ВЧ-каналов с заменой существующего устаревшего и ненадежного оборудования новым, отвечающим современным требованиям и вписывающимся в общую концепцию единой национальной сети связи электроэнергетики.

В компании работают высококвалифицированные специалисты, предоставляющие комплексные решения от технического аудита до поставок аппаратуры и оборудования ВЧ-связи, телемеханики, аппаратуры передачи сигналов РЗ и ПА. Комплексные поставки производятся по результатам детального анализа и технико-экономической оптимизации проекта ВЧ-связи.

Предлагаемое нами оборудование и аппаратура высокочастотных каналов связи по высоковольтным линиям электропередачи обеспечивает, при полноценном европейском качестве аппаратуры, наилучшее соотношение «цена-качество» в России.

Оригинальные конструктивно-технологические решения, использованные при разработке оборудования, защищены патентами.


Поставляемое оборудование сертифицировано в системе добровольной государственной сертификации «ГОСТ-Р» и имеет действующее заключение аттестационной комиссии ПАО «Россети», ПАО «ФСК ЕЭС».

В 2018 году продукция, выпускаемая компанией, была отмечена «Знаком качества Россети», выданным аттестационной комиссией ПАО «Россети».

В 2019 году на основании экспертного анализа по данным Государственной службы статистики компания ЗАО «НПП «ЭИС» внесена в рейтинг надежных и привлекательных для сотрудничества компаний по Уральскому федеральному округу, и занимает третье место по своему виду деятельности.

В 2021–2023 годах прошли испытания и запущены в массовое производство монолитные и инновационные высокочастотные заградители.

СХЕМА ОРГАНИЗАЦИИ ВЧ-КАНАЛОВ ПО ВЛ

подключение

ВЫСОКОЧАСТОТНЫЕ ЗАГРАДИТЕЛИ СЕРИИ ВЗ

Назначение

Высокочастотные заградители серии ВЗ предназначены для ослабления шунтирующего действия оборудования, шин подстанций и ответвлений от ВЛ на сигналы противоаварийной автоматики, релейной защиты, телефонной связи и телемеханики, передаваемые по фазным проводам высоковольтных $6-1150~\mathrm{kB}$ линий электропередачи.

ВЧ-заградители представляют собой заграждающие фильтры, которые включаются в рассечку фазного провода, и могут быть настроены на определенные полосы заграждения из диапазона $16-1000 \, \mathrm{kFl}_{\perp}$. В случае организации каналов ВЧ связи по изолированным грозозащитным тросам ВЧ-заградители служат для заземления тросов по промышленной частоте в местах присоединения.

Условия эксплуатации

Заградители предназначены для работы в следующих условиях:

- в части воздействия климатических факторов внешней среды — для длительной работы в исполнении «У» и «УХЛ» категории размещения 1 по ГОСТ 15150-69 и ГОСТ 15543-70; тип атмосферы 2 по ГОСТ 15150-69;
- высота над уровнем моря до 2000 м;
- сейсмостойкость по шкале MSK-64 9 баллов.

Вытекающие из требований МЭК 60353 и СТО 56947007-33.060.40.125-2012 значения характеристического сопротивления ВЛ и соответствующего значения активной составляющей полного сопротивления ВЗ, с учетом рекомендованных МЭК и СТО значений номинального длительного тока ВЗ, представлены в таблице ниже.

Параметры высокочастотного заградителя

Основными параметрами ВЧ-заградителя являются:

- величина активной составляющей полного сопротивления;
- полоса частот заграждения;
- номинальный длительный ток;
- номинальный кратковременный ток;
- ударный ток;
- индуктивность реактора ВЗ;
- класс линии электропередачи.

Значения характеристического сопротивления для ВЛ 35 — 750 кВ

Характеристическое сопротивление ВЛ / Активная составляющая полного сопротивления, не менее							Номинальный длительный ток В3 из ряда рекомендо-	
Напря- жение ВЛ	фаза - земля	фаза - фаза*	две фазы - земля*	трос - земля	трос - трос*	два троса - земля*	ток во из ряда рекомендо- ваного СТО, МЭК (действ.)	
35 кВ							100, 200, 400, 630 A	
110 кВ	450/640 Ом	400/570 Ом	540/770 Ом				400, 630, 800, 1000, 1250 A	
220 кВ							1000, 1250, 1600 A	
330 кВ	330/470 Ом	300/430 Ом	400/570 Ом	1600, 2000,		1600, 2000, 2500 A		
500 кВ	310/440 Ом	275/390 Ом	370/525 Ом	550/780 Ом	480/680 Ом	550/780 Ом	2000, 2500, 3150 A	
750 кВ	280/400 Ом	250/355 Ом	340/485 Ом	550/780 Ом	480/680 Ом	550/780 Ом	2000, 2500, 3150, 4000 A	

^{*} На каждую фазу (каждый трос)

МЭК и СТО рекомендуют следующие стандарты номиналов индуктивности реактора (мГн):

$$0.2 - 0.25 - 0.315 - 0.4 - 0.5 - 1.0 - 2.0$$

МЭК и СТО рекомендуют нижеследующие требования к номинальному кратковременному и ударному токам ВЗ (представлены в таблице ниже)

Предельные значения кратковременного и ударного токов ВЗ

Номинальный длитель-	Номинальный кратковр	ременный ток (действ.)	Ударный ток (пиковое значение)		
ный ток ВЗ (действ.)	Серия 1	Серия 2	Серия 1	Серия 2	
100 A	2,5 кА	5 κA	6,38 кА	12,75 кА	
200 A	5 κA	10 кА	 12,75 кА	25,5 кА	
400 A	10 кА	16 кА	25,5 кА	40,8 KA	
630 A	16 кА	20 кА	40,8 KA	51 кА	
800 A	20 кA	25 кА	 51 κΑ	63,75 кА	
1000 A	25 кА	31,5 кА	63,75 кА	80,33 кА	
1250 A	31,5 кА	40 кА	80,33 кА	102 кА	
1600 A	40 KA	50 κA	 102 кА	127,5 кА	
2000 A	40 KA	50 κA	102 кА	127,5 кА	
2500 A	40 KA	50 κA	102 кА	127,5 кА	
3150 A	40 KA	50 κA	102 кА	127,5 кА	
4000 A	63 кА	80 кА	160,65 кА	204 кА	

Конструкция

Основные составляющие конструкции высокочастотного заградителя:

- реактор заградителя (Р3) катушка индуктивности, предназначенная для пропускания тока промышленной частоты, протекающего по проводу линии, в которой включен В3;
- защитное устройство (ЗУ), предназначенное для защиты реактора и элемента настройки от перенапряжений (атмосферных и коммутационных), возникающих на линии и распределительных устройствах подстанций;
- элемент настройки (ЭН), предназначенный для получения (совместно с реактором) необходимого сопротивления заграждения в заданной полосе частот. В ряде случаев, в зависимости от требований к высокочастотным параметрам ВЗ, ЭН может отсутствовать.

Реактор Защитное устройство Элемент настройки Сетка от птиц Противокоронные кольца и колпачки Пьедестал

Дополнительные комплектующие высокочастотного заградителя:

- сетки от птиц;
- противокоронные кольца и колпачки;
- пьедестал для установки высокочастотного заградителя

PEAKTOP

Конструктивно реактор заградителя представляет собой катушку индуктивности (однослойную или многослойную), изготовленную из провода (как правило, алюминиевого или медного), размещенного на каркасе (реечный, цилиндрический и др.) из материала с высокими электроизоляционными свойствами. Каркас реактора ВЗ, наряду с высокими электроизоляционными свойствами, должен обеспечить высокую механическую прочность конструкции, необходимую для устойчивой работы оборудования при протекании через ВЗ токов короткого замыкания (предельные величины токов указаны в таблице), с учетом длительной (до 30 и более лет) эксплуатации в условиях воздействия соответствующих климатических факторов.

Материал каркаса реактора обладает:

- высокими электроизоляционными свойствами:
- высокой механической прочностью;
- устойчивостью к воздействию климатических и иных факторов, характерных для оборудования наружной установки (температура, влажность, соляной туман, обледенение, солнечное излучение, загрязненность воздуха и др.)

Каркас реактора изготавливается из композитных материалов.

Реактор ВЗ имеет защитное (как правило, многослойное) покрытие, в т.ч. для предохранения от межслоевого и межвит-кового шунтирования при обледенении, активных (особенно загрязненных) атмосферных осадках, несанкционированном попадании металлических предметов на проводящие поверхности катушки реактора.

ЭЛЕМЕНТ НАСТРОЙКИ СЕРИИ ЭН

Элемент настройки (ЭН) предназначен для обеспечения, совместно с реактором, необходимого сопротивления заграждения в заданной полосе частот. Элемент настройки, в зависимости от требуемой полосы частот заграждения, выполняется по схеме одночастотной настройки, двух- или трехконтурной схеме узкополосного заградительного фильтра, либо по схеме заградительного фильтра верхних частот. Завод-изготовитель производит расчет и настройку на диапазон частот заграждения, согласованный с заказчиком. По спецификации заказчика элемент настройки может быть изготовлен на любой диапазон частот заграждения, с точностью 0,5 кГц в диапазоне частот от 16 до 1000 кГц.

Схемы ЭН, конструкция ЭН, виды используемых материалов, комплектующих и технологий в совокупности обеспечивают устойчивость к перенапряжениям, вызванными:

- протеканием номинального кратковременного тока п. 19.3.2 МЭК 60353;
- атмосферными (грозовыми) воздействиями п. 19.3.1 МЭК 60353;
- коммутационными воздействиями пп. С. 4.3 и С. 5.2 МЭК 60353.

Гарантийный срок на элементы настройки составляет 5 лет. Срок эксплуатации составляет 20 лет.

В случае необходимости, ЗАО «НПП «ЭИС» изготавливает элементы настройки в нижеперечисленных конфигурациях (характеристики предоставляются по запросу):

- для обеспечения заграждения двух, трех полос частот;
- универсальные, для различных классов высокочастотных заградителей;
- перестраиваемые, с возможностью изменения диапазонов частот заграждения;
- универсальные и перестраиваемые, комбинированное
- для высокочастотных заградителей всех, эксплуатируемых в настоящий момент в России, типов и производителей.

Обозначение ЭН

∋H-X-XX XXX XXXX (XXX-XXXX),

где:

ЭН – элемент настройки (аббревиатура);

Х – номинальный длительный ток, А;

ХХ— номинальная индуктивность реактора, мГн;

ХХХ – Исполнение:

- УД усиленные динамические характеристики;
- Д Серия 2 МЭК 60353 (по умолчанию Серия 1);
- М малогабаритный вариант исполнения;

XXXX— климатическое исполнение и категория размещения по ГОСТ 15150-69;

(ХХХ-ХХХХ) — диапазон частот заграждения, кГц.

Пример обозначения для заказа: ЭН-630-0,5 УД УХЛ1 (160 — 1000)

ЗАЩИТНОЕ УСТРОЙСТВО

В качестве защитного устройства заградителя ЗАО «НПП «ЭИС» использует ограничители перенапряжений нелинейные (ОПН).

Ограничители перенапряжений нелинейные с полимерной изоляцией серии ОПН предназначены для защиты элемента настройки ВЗ от коммутационных и грозовых перенапряжений.

ОПН выполнен в виде колонки варисторов, заключенных в герметичный полимерный корпус.

Принцип действия основан на нелинейности вольт-амперной характеристики варисторов.

При рабочем напряжении активные токи через варисторы не превышают значения 10 мкА, а при перенапряжениях достигают многих сотен и тысяч ампер.

Преимущества высокочастотных заградителей ЗАО «НПП «ЭИС»

Большое количество типов ВЗ (около 60), различающихся:

- по номинальному току;
- по индуктивности;
- по допустимому номинальному кратковременному (ударному) току.

ВЗ с нестандартными частотами заграждения

- в т.ч. в диапазоне от 16 до 24 кГц;
- двух- и трёхчастотные полосы заграждения.
- диапазоны заграждения с Ra > 1000 Ом.

Уменьшенные габариты и вес:

- бо́льшие возможности по установке непосредственно на конденсаторы связи;
- бо́льшие возможности при реконструкции в случае замены устаревших ВЗ на ВЗ с повышенными динамическими характеристиками без перестройки порталов.

ИННОВАЦИОННЫЙ ЗАГРАДИТЕЛЬ

При разработке и производстве заградителей новой серии реализованы инновационные конструкторские и технологические идеи.

Конструкция

- Существенно уменьшены потери и улучшены частотные характеристики за счет почти полного исключения использования болтовых соединений в конструкции.
- Исключены операции, связанные с производством «гребнеобразной» рейки (механическая обработка армированных пластиков сводится только к резке).
- Используется провод прямоугольного сечения.
- В конструкции широко используются элементы, выполненные из стеклопластика с улучшенными механическими характеристиками и нагревостойкостью изоляции класса «Н».
- За счет уменьшения габаритов снижена ветровая нагрузка, существенно ограничены возможности ветровых колебаний реактора относительно центра масс до уровня, предохраняющего от излома в месте присоединения фазного провода к контактным пластинам.

Преимущества

- Энергосберегающие технологии. Уменьшены потери мощности реактора на 20–25%.
- Ресурсосберегающие технологии. Снижены размеры и масса до 50-70%
- **Уменьшения загрязнений окружающей среды.** Внедрены безотходные технологии обработки композитных материалов
- Улучшение эксплуатационных характеристик и надежности. Благодаря внедрению технологий изготовления реактора открытого и закрытого типа с использованием композитных изолирующих материалов высоких классов нагревостойкости повышена вариативность в типах заградителей, включая заградители со способностью работать при сверхнормативном длительном токе и сверхнормативной температуре эксплуатации, с повышенной устойчивостью к токам короткого замыкания, заградители для работы в сложных климатических условиях (тропики, высокогорье, морской туман и т.д.).
- **Существенное снижение габаритов и массы** значительно снизило затраты на подвесные и опорные конструкции, предназначенные для установки заградителей, уменьшило транспортные расходы и затраты на монтаж
 - Низкая собственная емкость реактора при высокой добротности обеспечили превосходные частотные характеристики.

МОНОЛИТНЫЙ ЗАГРАДИТЕЛЬ

Конструкция

Конструкция обеспечивает полную изоляцию витков реактора. Изолирующие слои стеклопластика с классом нагревостойкости «Н», составляющие межвитковую и наружную изоляцию формируют несущую конструкцию реактора ВЗ и определают его механическую прочность. Благодаря тому, что все пространство между витками заполнено диэлектриком обеспечивается чрезвычайно высокая устойчивость к токам короткого замыкания.

Преимущества

- повышенная надежность ВЗ;
- эксплуатация в самых сложных условиях окружающей среды: в тропическом климате, высокогорье (свыше 2000 м над уровнем моря), при воздействии морского тумана, в зоне техногенных загрязнений;
- улучшенные габаритно-массовые характеристики, что позволяет снизить нагрузку на опорные конструкции (в 1,5 раза) и ветровую нагрузку (в 1,5 2 раза);
- меньшие габариты и вес;
- защита обмотки реактора от агрессивного воздействия окружающей среды;
- высокая механическая прочность;
- высокая устойчивость к токам короткого замыкания;
- снижена ветровая нагрузка;
- отсутствует вероятность возникновения межвитковых и межслойных замыканий;
- возможность эксплуатации вблизи источников промышленного загрязнения;
- малые габариты и изолированная обмотка реактора открывают намного большие возможности для применения в ЗРУ;
- особенности конструкции исключают образование гололеда на обмотке реактора;
- большие перегрузочные способности;

- полностью соответствуют нормативно-техническим требованиям (СТО ПАО «ФСК ЕЭС» и МЭК 60353);
- соответствует высокому уровню исполнения оборудования ведущих мировых производителей;
- возможность установки монолитного ВЗ на стандартный конденсатор связи, без использования усиленных конструкций конденсаторов;
- высокая устойчивость элементов настройки (ЭН) к коммутационным перенапряжениям в течение всего срока эксплуатации.

Три значимых причины, определяющих выбор в пользу монолитной конструкции высокочастотных заградителей серии ВЗ производства ЗАО «НПП «ЭИС»

- единая (универсальная) конструкция для всех климатических зон, включая высокогорье и тропики;
- энергосбережение: меньшие добавочные потери за счет уменьшения металлических частей в конструкции;
- экологичность: уровень загрязнения окружающей среды значительно ниже в связи с отсутствием механической обработки композитных материалов при изготовлении высокочастотных заградителей.

Технические характеристики высокочастотных заградителей серии ВЗ

		Габариты реактора				Номинальный кратковремен-	Ударный ток,
Nº	Обозначение	Высота, мм (H)	Диаметр, мм (D)	Вес не более, кг	Класс ВЛ	ный ток, кА (среднеква- дратичное значение)	ударный ток, кА (пиковое значение)
1	В3-630-0,25 УХЛ1*	1000	1060	100		1.6	44
2	В3-630-0,5 УХЛ1*	1456	1060	167	75 220	16	41
3	В3-630-0,5 УД УХЛ1*	1193	980	202	35 – 220	40	102
4	В3-630-1,0 УХЛ1*	1640	1390	268		16	41
5	В3-1250-0,1 УХЛ1*	1060	950	167			
6	В3-1250-0,25 УХЛ1*	1235	1070	220		31,5	80
7	В3-1250-0,5 УХЛ1*	1540	1250	300			
8	В3-1250-0,5 Д УХЛ1*	1575	1250	390	110 – 330	40	102
9	_ В3-1250-1,0 УХЛ1*	1595	1540	450	110 - 330	31,5	80
_10	_ В3-1250-1,0 Д УХЛ1*	1585	1540	475		_ 40	102
11	_ В3-1250-1,5 УХЛ1*	1595	_1760	580		31,5	80
_12	В3-1250-2,0 М УХЛ1*	1680	1415	757			
_13	В3-2000-0,1 Д УХЛ1*	1060	1060	282		50	128
14	В3-2000-0,25 УХЛ1*	1235	_1100	347		40	102
_15	В3-2000-0,5 УХЛ1*	1510	1205	424			
_16	В3-2000-0,5 Д УХЛ1*	1535	1540	629	330 – 750	_50	_128
_17	В3-2000-1,0 УХЛ1*	_1595		_610	330 730	_40	_102
18	В3-2000-1,0 Д УХЛ1*	1595	1540	835		_50	_128
19	В3-2000-1,5 УХЛ1*	_1718	_1850	900		40	102
20	В3-2000-2,0 УХЛ1*	3170	_1540	1270			
21	В3-3150-0,1 УХЛ1*	_1065	_1200	360	330 – 750	_40	_102
22	В3-3150-0,5 УХЛ1*	1535	_1540	865		_54	138
23	В3-4000-0,1 УХЛ1*	1065	1200	380	500 – 750	63	161
24	В3-4000-0,5 УХЛ1	1535	1540	870	300 730	03	101
25	В3-100-0,5-5-В УХЛ1	715	780	_40		5 (10**)	12,75 (25,5**)
26	В3-200-0,5-5-В УХЛ1	800	700	60 (75**)			
27	В3-200-1,0-5-В УХЛ1	1200	780	105 (120**)	35 – 110	5 (10**)	12,75 (25,5**)
28	В3-400-0,5-10-В УХЛ1	800	700	64 (70**)		10 (16**)	25,5 (40,8**)
29	В3-400-1,0-10-В УХЛ1	1200	780	120 (130**)		10 (16**)	25,5 (40,8**)
30	В3-630-0,25-16-В УХЛ1	620	700	72 (75**)		16 (20**)	41 (50**)
31	В3-630-0,5-16-В УХЛ1	800 (750***)	780 (750***)	110 (80***)			41
32	В3-630-0,5-20-В УХЛ1	800	780	120		20	50
33	В3-630-0,5-16-2Н УХЛ1	800	780	110 (90***)		16	41
34	В3-630-0,5-20-2Н УХЛ1	850	780	120	35 – 220	20	50
35	В3-630-0,5-31,5-2Н УХЛ1	920	780	130		31,5	80
36	В3-630-0,5-40-2Н УХЛ1	1317	780	190		40	102
37	В3-630-1,0-16-В УХЛ1	1450	780	170		16 (20**)	41 (50**)
38	В3-630-2,0-16-В УХЛ1	1600	1250	260		16 (20**)	41 (50**)
39	ВЗ-1250-0,25-31,5-В УХЛ1	850	780	180	110 770	31,5 (40**)	80 (102**)
40	ВЗ-1250-0,5-31,5-В УХЛ1	1250	1000	270	110 – 330	31,5 (40**)	80 (102**)
41	ВЗ-1250-0,5-40-В УХЛ1	1250	1000	320		40	102
42	ВЗ-1250-1,0-31,5-В УХЛ1	1350	1250	380		31,5 (40**)	80 (102**)
43	ВЗ-2000-0,25-40-В УХЛ1	1000	1050	280	750 750	40 (50**)	102 (128**)
44	ВЗ-2000-0,5-40-В УХЛ1	1250	1250	400	350 – 750	40	102
45	ВЗ-2000-0,5-50-В УХЛ1	1250	1250	450		50	128
46	В3-2000-1,0-40-В УХЛ1	1850	1250	540	L	40	102

Исполнение:

- УД усиленные динамические характеристики
- Д Серия 2 МЭК 60353 (по умолчанию Серия 1)
- * Класс нагревостойкости изоляции по ГОСТ 8865-93 «А»
- ** Вариант с повышенной стойкостью к токам к.з.

Классы нагревостойкости и соответствующие им температуры по ГОСТ 8865-93:

Y − 90 °C	H − 180 °C
A − 105 °C	200 – 200 °C
E − 120 °C	220 – 220 °C
B − 130 °C	250 – 250 °C
F − 155 °C	

^{***} Облегченный вариант

УСЛОВНОЕ ОБОЗНАЧЕНИЕ ВЫСОКОЧАСТОТНОГО ЗАГРАДИТЕЛЯ

B3 XXXX-XX-XXX-XX (XXX-XXXX)-XXX XXX Климатическое исполнение, категория размещения по ГОСТ 15150-69 Гарантируемое активное сопротивление в соответствующем частотном диапазоне (с учетом условий эксплуатации), Ом Диапазон частот заграждения, кГц Тип реактора (по умолчанию – открытого типа, закрытого - «2»), класс нагревостойкости изоляции по ГОСТ 8865-93 Номинальный кратковременный ток (ток термической стойкости), кА Номинальная индуктивность (индуктивность реактора на частоте 100 кГц), мГн Номинальный длительный ток, А Пример обозначения для заказа В3-2000-0,1 (470-1000) УХЛ1 Заградитель высокочастотный В3-630-0,5-31,5-2Н (16-1000)-650 УХЛ1 (аббревиатура)

В том числе ЗАО «НПП «ЭИС» изготавливает высокочастотные заградители с номинальным током до 4000 A, с индуктивностью реактора до 2,5 мГн, характеристики которых не приведены в таблице выше, на основе технического задания.

ФИЛЬТРЫ ПРИСОЕДИНЕНИЯ СЕРИИ ФП

Назначение

Фильтр присоединения (ФП) предназначен для обеспечения (совместно с конденсатором связи) согласования сопротивлений при подключении аппаратуры высокочастотных каналов релейной защиты, противоаварийной автоматики и телефонной связи к фазе воздушных линий электропередачи (ВЛ) напряжением 6—1150 кВ и к грозозащитным тросам ВЛ.

Основные функции

- обеспечение гальванической развязки между цепями ВЛ и входными цепями оборудования связи;
- согласование волнового сопротивления линейного тракта и волнового сопротивления коаксиального кабеля;
- заземление нижней обкладки конденсатора связи на промышленной частоте.

Фильтр присоединения совместно с конденсатором связи представляет схему трансформаторного (автотрансформаторного) полосового фильтра. Каждая модификация фильтра рассчитана на работу в определенной полосе частот и с определенным конденсатором связи или емкостным трансформатором напряжения.

Главной отличительной особенностью ФП является применение новых защитных устройств в его входных цепях: со стороны линии — ограничителя перенапряжения ОПН (вместо вентильного разрядника), а со стороны ВЧ-кабеля — варистора (вместо газового разрядника).

Предусмотрена возможность изменения фазы входного (выходного) сигнала на 180 градусов путем переключения выводов вторичной обмотки трансформатора.

Фильтр присоединения изготавливается с частотами пропускания в диапазоне от 16 до 1000 кГц.

Конструкция

Элементы фильтра размещены в корпусе из силумина и закрыты алюминиевой крышкой с уплотнительной резиновой прокладкой, соединенных между собой невыпадающими болтами из латуни. На нижней стенке корпуса находятся ввод для коаксиального кабеля, компенсатор давления и шпилька заземления.

Условия эксплуатации

Климатическое исполнение фильтра — УХЛ. Категория размещения — 1 по ГОСТ 15150. Сейсмостойкость по шкале MSK-64 — 9 баллов.

Преимущества

В случае необходимости фильтры присоединения изготавливаются:

- с возможностью поворота фазы на 180°;
- с двухполосной настройкой;
- для организации ВЧ канала по схеме фаза-фаза ФП может быть изготовлен со встроенным дифференциальным трансформатором.

Технические характеристики

Наименование	Значение
Значение рабочего затухания в полосе пропускания	не более 1,5 дБ
Затухание несогласованности в полосе пропускания, определенное при нагрузке ФП на соответствующее номинальное сопротивление	не менее 12 дБ
Номинальное входное сопротивление ФП со стороны высокочастотного кабеля	75 Ом
Сопротивление ФП со стороны ВЛ току промышленной частоты	не более 4 Ом
Номинальное входное сопротивление ФП со стороны ВЛ	соответствует волно- вому сопротивлению ВЛ
Допустимая суммарная пиковая мощность высокочастотных сигналов со стороны кабельного ввода	не более 400 Вт
Уровень мощности ВЧ продуктов нелинейных искажений 2-го и 3-го порядка относительно допустимой мощности ВЧ сигнала	не превышает 80 дБ
Macca	не более 12 кг
Габариты	335×328×172 мм

Основные характеристики фильтров серии ФП соответствуют рекомендации МЭК 60481.

Обозначение

ФП (ХХ-ХХХ)/ХХХХ УХЛ1,

где: ФП — фильтр присоединения; XX — нижняя частота полосы пропускания, кГц; XXX — верхняя частота полосы пропускания, кГц; XXXX — емкость конденсатора связи, пФ; УХЛ-1 — климатическое исполнение по ГОСТ 15150.

РАЗДЕЛИТЕЛЬНЫЕ ФИЛЬТРЫ СЕРИИ РФ

Назначение

Разделительный фильтр (РФ) предназначен для защиты приемника аппаратуры противоаварийной автоматики (либо аппаратуры защит) от прямого воздействия мощного сигнала передатчика аппаратуры связи, в случае их подключения в один высокочастотный тракт с использованием одного фильтра присоединения.

Разделительные фильтры должны включаться:

- в тракт каждого канала при параллельном подключении аппаратуры специализированных каналов ВЧ-защиты и специализированных каналов РЗ и ПА;
- в тракт аппаратуры связи при параллельном подключении аппаратуры специализированных каналов ВЧ-защиты или специализированных каналов РЗ и ПА.

Конструкция

Корпус фильтра состоит из основания и крышки, изготовленных из алюминиевого сплава. Все элементы фильтра размещены на основании корпуса, крышка прижимается к основанию винтами.

Виды монтажа

- монтаж на DIN-рейку,
- возможность монтажа на любую поверхность.

Технические характеристики

Наименование	Значение	
Мощность сигнала высокой частоты в полосе пропускания.	250 BA	
Затухание, вносимое разделительным фильтром при включении его в ВЧ-тракт параллельно с нагрузкой 75 Ом	не превышает 0,8 дБ в полосе частот ±2 кГц относительно частоты настройки фильтра. Для обеспечения Δ F > 4 кГц может быть изготовлен полосовой РФ	
Затухание, вносимое разделительным фильтром при включении его в ВЧ тракт последовательно с нагрузкой 75 Ом	не превышает 0,8 дБ на частотах, отстоящих от частоты настройки фильтра в обе стороны на 10 % и более. Для полосового РФ 10 % считается от граничных частот	
Сопротивление изоляции выходных цепей разделительного фильтра по отношению к корпусу	≥ 100 MOM	
Электрическая прочность изоляции между корпусом и клеммой ПЗ (ПС)	выдерживает 1500 В (эффективных) переменного тока частотой (50 ± 3) Гц в течение 1 минуты	
Диапазон рабочих частот	от 16 до 1000 кГц	
Масса разделительного фильтра	не более 1 кг	
Габариты	120×120×95 мм	
Гарантийный срок	5 лет	
Срок службы	не менее 12 лет	

Условия эксплуатации

Климатическое исполнение разделительного фильтра РФ — УХЛ.

Категория размещения — 4 по ГОСТ 15150-69.

Номинальное значение основных технических характеристик указаны для номинальных климатических условий по ГОСТ 15150–69:

- температура от 1 до 45 °C;
- относительная влажность воздуха от 45 до 80 %;
- атмосферное давление от 8,4×10⁴ Па до 10,7×10⁴ Па (от 630 до 800 мм рт. ст.).

Преимущества

- уменьшены габаритно-массовые характеристики;
- усилена пылевлагозащита;
- два типа подключения радиочастотного кабеля: через клеммную колодку (исполнение 1); через высокочастотный разъем CP-75 (исполнение 2).

Обозначение

1. Стандартный разделительный фильтр РФ-F хх УХЛ4, где: F — частота настройки фильтра, к Γ и; хх — способ подключения радиочастотного кабеля: «КК» — клеммная колодка,

2. Полосовой разделительный фильтр РФ-(Fн - Fв) xx УХЛ4,

либо «СР» — высокочастотный разъем СР-75.

где: Fн — нижняя граница диапазона частот, кГц; Fв — верхняя граница диапазона частот кГц; xx — способ подключения радиочастотного кабеля: «КК» — клеммная колодка, либо «СР» — высокочастотный разъем СР-75.

ШКАФЫ ОТБОРА НАПРЯЖЕНИЙ СЕРИИ ШОН

Назначение

Шкаф отбора напряжений (ШОН) предназначен для формирования контрольных напряжений управления, измерений, защит линии электропередачи, к которой он подключен посредством конденсатора связи, на электрических подстанциях переменного тока с номинальной частотой 50 Гц и номинальным напряжением 110 кВ, 220 кВ и 330 кВ.

Конструкция

Конструктивно ШОН представляет собой шкаф с доступом через переднюю дверь. Функциональные узлы, устанавливаемые в ШОН, размещены на монтажной панели, закрепленной к задней стенке шкафа.

Технические характеристики

	Значение		
Наименование	ШОН-301С	шон-303П	
Рабочее напряжение, В	380	380	
Номинальный ток первичной обмотк и на частоте 50 Гц, Іном вх, А	0,128	0,128	
Номинальный ток вторичных обмоток Іном вых, А	0,075 XT1 (XT3) 0,15 XT2 (XT4)	0,075 XT1 (XT3) 0,15 XT2 (XT4)	
Тип конденсатора связи/емкость, нФ для напряжения ВЛ, 110 кВ 220 кВ 330 кВ	1*(110v3-6,4)/6,4 2*(110v3-6,4)/3,2 3*(110v3-6,4)/2,15	1*(110v3-6,4)/6,4 2*(110v3-6,4)/3,2 3*(110v3-6,4)/2,15	
Возможность ступенчатого регулирования тока вторичной обмотки, %	±5 ±10		
Допустимое отклонение тока вторичных обмоток, %	±5	±5	
Максимальное напряжение вторичных обмоток, В	120	120	
Степень защиты согласно ГОСТ 14256-96	IP 54	IP 54	
Механическое исполнение согласно ГОСТ 17516.1-90	M3	M3	
Габаритные размеры, мм	470×398×210	667×488×250	
Масса, кг	не более 25	не более 25	

ЗАО «НПП «ЭИС» изготавливает шкафы отбора напряжения, характеристики которых не приведены в таблице выше, на основании технического задания

Условия эксплуатации

Климатическое исполнение по ГОСТ 15543-70 и ГОСТ 15150-69:

- У1 для поставки в районы с умеренным климатом;
- УХЛ1 для поставки в районы с умеренно-холодным климатом;
- Т1 для поставок в районы с тропическим климатом.

Группа условий эксплуатации в части воздействия механических факторов — М1 по ГОСТ 17516–92. Способ установки — навесной.

Обозначение **ШОН-30X X**

С — со ступенчатым регулированием тока, П — плавным, Б — без регулирования тока тип конденсатора связи 1,2,3 модификация шкаф отбора напряжения

ФИЛЬТР-ШОН ФИЛЬТР ПРИСОЕДИНЕНИЯ СО ВСТРОЕННЫМИ ФУНКЦИЯМИ ШКАФА ОТБОРА НАПРЯЖЕНИЯ

Назначение

Изделие состоит из фильтра присоединения, предназначенного для подключения аппаратуры высокочастотных каналов релейной защиты, противоаварийной автоматики и телефонной связи посредством конденсатора связи к фазе воздушных линий электропередачи номинальным напряжением 110 кВ, 220 кВ и 330 кВ, и шкафа отбора напряжения, предназначенного для формирования контрольных напряжений управления, измерений, защит линии электропередачи.

Конструкция

Фильтр-ШОН по виду конструкции представляет шкафы малогабаритные с доступом через переднюю дверь и элементами крепления и защиты. Компоненты, устанавливаемые в шкаф, размещены на раме, закрепленной на задней стенке шкафа. Корпус Фильтр-ШОН выполнен из нержавеющей стали.

По специальному заказу корпус может выполняться из листовой стали с полимерно-порошковым покрытием.

Способ подключения Фильтр-ШОН — стандартное подключение фильтра присоединения и шкафа отбора напряжения.
Степень защиты по ГОСТ 14254—96 — IP54.

Технические характеристики

Наименование	Значение
Рабочее напряжение, В	380
Номинальный ток первичной обмотк и на частоте 50 Гц, Іном вх, А	0,128
Номинальный ток вторичных обмоток Іном вых, А	0,075 XT1 (XT3) 0,15 XT2 (XT4)
Тип конденсатора связи/емкость, нФ для напряжения ВЛ, 110 кВ 220 кВ 330 кВ	1*(110√3-6,4)/6,4 2*(110√3-6,4)/3,2 3*(110√3-6,4)/2,15
Возможность ступенчатого регулирования тока вторичной обмотки, %	±5 ±10
Допустимое отклонение тока вторичных обмоток, %	±5
Максимальное напряжение вторичных обмоток, В	120
Степень защиты согласно ГОСТ 14256-96	IP 54
Механическое исполнение согласно ГОСТ 17516.1-90	M3
Габариты	470×300×225 мм
Macca	не более 27 кг.

Техническое описание и характеристики фильтра присоединения и шкафа отбора напряжения приведены в соответствующих разделах.

Условия эксплуатации

Климатическое исполнение — УХЛ1. Категория размещения — 1 по ГОСТ 15543–70

Группа условий эксплуатации в части воздействия механических факторов — M1 по ГОСТ 17516–92.

Способ установки — навесной.

Преимущества

и ГОСТ 15150-69.

- сокращение затрат на приобретение оборудования и его монтаж;
- не требуется дополнительных соединительных шин между фильтром присоединения и шкафом отбора напряжения;
- не требуется выполнения каких-либо переключений: Фильтр-ШОН одновременно выполняет функции фильтра присоединения и шкафа отбора напряжения;
- встроенный линейный разъединитель (заземлитель).

Обозначение

ШОНФП-301C (XX-XXX)/XXXX УХЛ1,

где: ШОН — шкаф отбора напряжения; ФП — фильтр присоединения; 301C — модификация ШОН со ступенчатой регулировкой вторичных токов трансформаторов; XX — нижняя частота полосы пропускания, $\kappa \Gamma_{\rm U}$; XXX — верхняя частота полосы пропускания, $\kappa \Gamma_{\rm U}$; XXX — емкость конденсатора связи, $\pi \Phi$; $YX\Pi1$ — климатическое исполнение по ГОСТ 15150.

ПЬЕДЕСТАЛ УНИВЕРСАЛЬНЫЙ

Обозначение

Пьедестал универсальный (ПВЗ) - ХХХХ УХЛ1,

где XXXX — номинальный ток высокочастотного заградителя, под который устанавливается пьедестал.

Назначение

Пьедестал универсальный предназначен для установки высокочастотных заградителей серии ВЗ производства ЗАО «НПП «ЭИС» с номинальным током от 630 до 4000 А на все существующие типы опорных конструкций.

Пьедесталы устанавливаются:

- на любые типы опорных фундаментов;
- на конденсатор связи, оснащенный изолирующей подставкой, при подключении высокочастотного заградителя к линиям 35 и 110 кВ;
- на все существующие типы шинных опор, состоящих из одной или нескольких колонок опорных изоляторов;
- на другие, не указанные виды опорных конструкций.

ЭPB3Y

ЭКВИВАЛЕНТ РЕАКТОРА ВЫСОКОЧАСТОТНОГО ЗАГРАДИТЕЛЯ УНИВЕРСАЛЬНЫЙ

Назначение

ЭРВЗУ предназначен для проверки элемента настройки высокочастотного заградителя (полоса заграждения). Параметры ЭРВЗУ (индуктивность и емкость) в соответствии с типом проверяемого элемента настройки задаются переключателями, расположенными на лицевой панели. Проверка ЭН проводится совместно с защитным устройством из комплекта поставки ВЗ.

ЭРВЗУ изготавливается в ударопрочном корпусе.

Технические характеристики

Наименование	Значение
Индуктивность, Lном, мГн	0,12,09
Емкость, Сном, пФ	101005
	+5+ 45
Класс защиты по ГОСТ 14254: в закрытом состоянии в открытом состоянии	IP 67 IP 40
Габариты, мм	258×230×170
Масса, кг	не более 5

Условия эксплуатации

Вид климатического исполнения по ГОСТ 15150-69 — УХЛ4.

АДАСЭ-БК АППАРАТУРА ДАЛЬНЕЙ АВТОМАТИЧЕСКОЙ СВЯЗИ ЭНЕРГОСИСТЕМ

Конструкция

Со стороны телефонного канала АДАСЭ-БК взаимодействует с аппаратурой АДАСЭ-ИМ, АДАСЭ-ИК и др., а также с комплектами АДАСЭ, входящими в состав АТС (например Меридиан-1). АДАСЭ-БК обеспечивает автоматическую диагностику исправности телефонного канала. Информация о состоянии канала выдается на световой индикатор.

АДАСЭ-БК может содержать до 6 блоков низкочастотных окончаний, которые могут быть двух типов: «Блок НЧ» и «Блок НЧ трехпроводных СЛ», в зависимости от типа сопрягаемой аппаратуры. Каждый из указанных блоков обеспечивает двухстороннюю дальнюю автоматическую связь (тональными управляющими частотами F1 = 1200 Гц и F2 = 1600 Гц).

Назначение

Аппаратура АДАСЭ-БК предназначена для автоматизации дальней телефонной связи при комплексном использовании телефонных каналов с предоставлением диспетчеру приоритета

Аппаратура АДАСЭ-БК является оконечным низкочастотным устройством 4-х проводного телефонного канала, содержит дифференциальную систему и все устройства для осуществления функций переходного устройства между телефонным каналом и АТС, а также диспетчерским коммутатором или телефонным аппаратом.

АДАСЭ-БК предназначена для взаимодействия со следующими типами аппаратуры:

- АТС с сигнализацией по входящим и исходящим трехпроводным соединительным линиям (шестипроводный стык);
- ATC с интерфейсом E&M и двухпроводным разговорным трактом;
- офисная АТС с аналоговыми двухпроводными линиями;
- телефонный аппарат;
- диспетчерский коммутатор.

БЛОКИ НИЗКОЧАСТОТНЫХ ОКОНЧАНИЙ

Блок НЧ обеспечивает связь:

- между абонентами АТС с интерфейсом E&M и офисной ATC в любой комбинации:
- между двумя диспетчерскими коммутаторами (ДК) без набора номера с подключением к занятому абонентами АТС каналу и его принудительным освобождением;
- между абонентами АТС и удаленным абонентом этой же АТС, при этом блоки НЧ могут выполнять все необходимые функции как со стороны АТС, так и со стороны удаленного абонента;
- транзитное соединение через офисную АТС или АТС с E&M двух ТЧ-каналов;
- между диспетчерским коммутатором, минуя приборы своей АТС, с абонентами встречной АТС;
- между диспетчерским коммутатором и удаленным абонентом без набора номера.

Блок НЧ трехпроводных СЛ:

- между абонентами АТС с трехпроводными СЛ;
- между двумя диспетчерскими коммутаторами без набора номера с подключением к занятому абонентами АТС каналу и его принудительным освобождением;
- транзитное соединение через АТС с трехпроводными СЛ двух ТЧ-каналов.

Блоки низкочастотных окончаний выполнены с использованием современной элементной базы ведущих зарубежных производителей: Analog Devices (кодеки и операционные усилители), Infineon (твердотелые),

Yageo (дискретные чип-компоненты) и др.

В зависимости от требуемого числа каналов связи АДАСЭ-БК может содержать 1 или 2 контроллера, каждый из которых обеспечивает управление группой блоков низкочастотных окончаний от 1-го до 3-х. Контроллеры выполнены на процессорах фирм Atmel и Analog Devices, цифровой тракт контроллера реализован на двух ПЛИС (программируемая логистическая интегральная схема) фирмы Altera.

Для повышения надежности АДАСЭ-БК обеспечивает резервирование по питанию. Для этого в состав аппаратуры входят

два независимых блока питания «БП АДАСЭ (24–60) В», включенных параллельно. Блоки питания обеспечивают формирование вторичных питающих напряжений из первичного напряжения постоянного тока. Каждый из блоков питания может обеспечивать питающими напряжениями все блоки, входящие в состав АДАСЭ-БК. Блоки питания выполнены на DC- DC преобразователях фирм Chinfa и Traco Power с использованием оксидно-полупроводниковых конденсаторов (не требующих тренировки) фирм Ерсоѕ и Kemet.

При необходимости сопряжения на объекте с сетью 220 В в состав АДАСЭ-БК включаются дополнительные AC-DC преобразователи фирмы Meanwell.

АДАСЭ-БК может поставляться с «Комплектом ПО и принадлежностей» для подключения к ПЭВМ. Программное обеспечение АДАСЭ-БК позволяет провести настройку параметров каждого канала связи и обеспечивает:

- изменение коэффициентов передачи;
- изменение центральных частот фильтров-приемников F1 и F2;
- изменение порогов срабатывания детекторов F1 и F2;
- изменение уровней F1 и F2;
- изменение порога детектирования наличия речи в проключенном канале (для автоматического освобождения канала при длительном отсутствии речи);
- включение/выключение автоматического контроля незанятого канала;
- изменение количества цифр набора номера (ЦНН)
 передаваемых в канал суммой частот F1+F2, при этом
 остальные ЦНН будут передаваться частотой F1. Для
 обеспечения работы в режиме удаленного абонента
 АТС, имеющей собственный комплект АДАСЭ;
- восстановление начальных параметров.

Основные технические характеристики

Наименование	Значение
Количество подключаемых каналов связи	от 1 до 6
Напряжение питания	–(2472) В (85264) В эфф, (4763) Гц
Потребляемая мощность на 1 канал, не более	5 Вт
Габаритные размеры (ШхВхГ) в кон- структиве для 19' стойки	483х192х253 мм
Габаритные размеры (ШхВхГ) в кон- структиве для настенного крепления	580х337х400 мм
Масса в конструктиве для 19' стойки, не более	6,5 кг
Масса в конструктиве для настенного крепления, не более	20 кг

Обозначение

АДАСЭ-БК-Х НЧ-ХХ НЧЗСЛ-220В-19',

где:

АДАСЭ-БК — тип аппаратуры.

X— Количество блоков НЧ, обеспечивающих режимы работы: с «удаленным абонентом» по интерфейсам FXS и FXO; с «офисной ATC» по интерфейсам FXS и FXO; с «ATC E&M» по интерфейсу E&M с двухпроводным разговорным трактом. ДК подключается к отдельному порту с наивысшим приоритетом.

XX — Количество блоков НЧ трехпроводных СЛ, обеспечивающих режим работы по трехпроводным входящим и исходящим соединительным линиям (шестипроводный стык). ДК подключается к отдельному порту с наивысшим приоритетом.

«220В» — питание от первичной сети 220 В эфф, « » — питание от источника напряжения постоянного тока – 24... – 72 В. «19'» — конструктив для установки в 19' стойку, « » — конструктив для настенного монтажа.

Примеры обозначения в случае комбинации блоков НЧ-окончаний разных типов:

АДАСЭ-БК-4 НЧ-2 НЧЗСЛ-19' — четыре блока НЧ и два блока НЧ трехпроводных СЛ, питание от источника напряжения постоянного тока –24...–72 В, конструктив для установки в 19' стойку;

АДАСЭ-БК-2 НЧ-1 НЧЗСЛ — два блока НЧ и один блок НЧ трехпроводных СЛ, питание от источника напряжения постоянного тока –24...–72 В конструктив для настенного монтажа;

АДАСЭ-БК-1 НЧ-3 НЧЗСЛ-220 В — один блок НЧ и три блока НЧ трехпроводных СЛ, питание от первичной сети 220 В эфф, конструктив для настенного монтажа.

КОНДЕНСАТОРЫ СВЯЗИ

По мере развития сети высоковольтных линий электропередачи, увеличения их протяженности и оснащения автоматикой возникает необходимость в надежной диспетчерской и административно-хозяйственной связи между отдельными пунктами, передаче сигналов телеизмерения, аварийного отключения выключателей, релейной защиты и других данных. Обычно такая связь осуществляется непосредственно по высоковольтным ЛЭП. Одним из элементов оборудования такой связи являются конденсаторы, которые отделяют аппаратуру связи от высокого напряжения частоты 50 Гц, пропуская сигналы высокой частоты по каналам связи. На основе этих же конденсаторов делаются устройства отбора мощности при частоте 50 Гц непосредственно от ЛЭП для питания измерительной аппаратуры и силового оборудования, а также измерительные устройства (делители, трансформаторы напряжения) для измерения напряжения ЛЭП.

Назначение

- для обеспечения высокочастотной связи на частотах от 16 до 1500 кГц в линиях электропередачи номинальным напряжением 35, 110, 150, 220, 330, 500, 750 кВ переменного тока частоты 50 и 60 Гц.
- для присоединения аппаратуры связи к линиям электропередачи от 6 до 35 кВ и грозозащитным тросам.

Конденсаторы изготовлены в фарфоровых или композитных покрышках и пропитаны экологически безопасной жидкостью.

КОНДЕНСАТОРЫ ТИПА СМ И СМА

Конструкция

- Конденсаторы изготавливаются с применением плёночного диэлектрика. По согласованию с заказчиком возможно изготовление конденсаторов на номинальное напряжение 110/√3 кВ с бумажно-плёночным диэлектриком. В этом случае в обозначении типономинала конденсатора указывают буквы «БП».
- Конденсаторы связи пропитаны экологически безопасной диэлектрической жидкостью, которая не входит в список запрещенных Стокгольмской конвенцией о стойких органических загрязнителях (2001 г.).
- конденсатор подвесного исполнения для отбора активной электрической мощности из сетей переменного тока частоты 50 Гц напряжением 110 кВ.

Технические характеристики конденсаторов

Обозначение типономинала	Тангенс угла потерь
СМ(В, П, Б, ПВ, ПБ, БП, ПБВ)-66/√3-4,4 У1; ХЛ1; УХЛ1	3,0×10 ⁻³
СМ(В, П, Б, ПВ, ПБ, БП, ПБВ)-110/√3-6,4 У1; ХЛ1; УХЛ1	3,0×10 ⁻³
СМ(В, П, Б, ПВ, ПБ, БП, ПБВ)-(БП)-110/√3-6,4 У1; ХЛ1; УХЛ1	3,0×10 ⁻³
СМ(В, П, Б, ПВ, ПБ, БП, ПБВ)-110/√3-3,2 У1; ХЛ1; УХЛ1	3,0×10 ⁻³
CMM-20/√3-35(74, 107) У1	2,3×10 ⁻³
СМА(В, П, ПВ)-(БП)-(К)-110/√3-6,4 УХЛ1	2,5×10 ⁻³
СМА(В)-(К)-133/√3-18,6 УХЛ1	2,5×10 ⁻³
СМА(В, Б, БВ)-(К)-166/√3-14(18) УХЛ1	2,5×10 ⁻³
СМА(В)-(К)-188/√3-12 УХЛ1	2,5×10 ⁻³
СМА(В)-220/√3-3,2 УХЛ1	2,5×10 ⁻³
СМАВ-(БП)-110/√3-6,4 УХЛ1 *	2,5×10 ⁻³

В скобках указаны возможные варианты исполнения конденсаторов связи.

Обозначение

В обозначении конденсаторов:

первая цифра после типа — номинальное напряжение в киловольтах; вторая цифра — ёмкость в нанофарадах;

С – конденсатор связи;

М – пропитка маслом;

Б – категория электрооборудования по внешней изоляции;

В — с выводом;

 Π — совмещенный с изолирующей подставкой;

 $\mathsf{M}-\mathsf{к}$ онденсаторы изготавливаются в металлических корпусах;

БП — бумажно-плёночный диэлектрик;

А – в армированной покрышке;

K- конденсаторы изготавливаются в композитном корпусе с силиконовым оребрением.

Примеры обозначений:

СМПВ-110/ $\sqrt{3}$ -6,4 ХЛ1; СМАВ-БП-110/ $\sqrt{3}$ -6,4 УХЛ1; СМА-К-166/ $\sqrt{3}$ -18 УХЛ1.

По согласованию с заказчиком возможно изготовление конденсаторов с длиной пути утечки внешней изоляции, соответствующей III или IV степени загрязнения по ГОСТ 9920-89.

В зависимости от исполнения покрышек возможны отличия в габаритных и установочных размерах конденсаторов. Необходимые размеры уточняются при заказе.

^{*} конденсатор связи, усиленного исполнения (опорный), предназначенный для установки высокочастотного заградителя.

КОНДЕНСАТОРЫ СВЯЗИ УСИЛЕННОГО ИСПОЛНЕНИЯ

Назначение

- Необходимы на небольших подстанциях, где отсутствуют порталы и траверсы.
- Возможна установка заградителей типа ВЗ-630-0,5 и ВЗ-1250-0,5, либо иных типов с габаритами не более: по высоте 1500 мм, по диаметру 1300 мм. Масса заградителя не должна превышать 310 кг. Для установки заградителей на верхней крышке имеется 6 свободных отверстий диаметром 18 мм, расположенных на окружности диаметром 445 или 420** мм, в зависимости от исполнения фарфоровой покрышки. Крепление ВЧ-заградителя осуществляется с помощью стандартного узла крепления, однако по согласованию с заказчиком, возможна разработка узла по индивидуальным требованиям. Электрическое соединение заградителя и конденсатора осуществляется с помощью контактных площадок на заградителе и верхней крышке конденсатора.
- Конденсаторы изготавливаются с применением плёночного диэлектрика. По согласованию с заказчиком возможно изготовление конденсаторов с бумажно-плёночным диэлектриком. В этом случае в обозначении типономинала конденсатора указывают буквы «БП».

 Конденсатор может быть изготовлен во взрывобезопасном исполнении. В этом случае в обозначении типономинала конденсатора указывают буквы «Ex»*.

При заказе конденсатора следует учитывать, что данный конденсатор устанавливается на изолирующую подставку ПИ-6 УХЛ1.

- * При заказе указывать «усиленное исполнение».
- ** Необходимое значение габаритных и установочных размеров уточняется при заказе.

Во избежание перегрева частей конденсатора связи, изготовленных из магнитных металлов, вследствие влияния электромагнитного поля высокочастотного заградителя, для установки высокочастотных заградителей на конденсатор связи рекомендуется использовать пьедестал универсальный (АВЛБ.301313.013).

КОНДЕНСАТОРЫ СВЯЗИ ВЗРЫВОБЕЗОПАСНОГО ИСПОЛНЕНИЯ

Назначение

- Для обеспечения высокочастотной связи на частотах от 24 до 1000 кГц по линиям электропередачи номинальным напряжением 110, 220, 330, 500, 750 кВ переменного тока, частоты 50 и 60 Гц.
- Предназначены для замены обычных конденсаторов связи на линиях электропередачи. Взрывобезопасность конденсатора обеспечивается специально спроектированным и испытанным узлом взрывозащиты. Вследствие этого конденсаторы обладают повышенной стойкостью к воздействиям энергий внутреннего короткого замыкания и не допускают взрыва, представляющего опасность для окружающего оборудования и персонала.

Обозначение

- Взрывобезопасное исполнение конденсатора связи обозначается буквами «Ех» в обозначении конденсатора.
- Конденсаторы связи могут быть изготовлены как в фарфоровых, так и в композитных корпусах с силиконовым оребрением (в этом случае в обозначении типономинала конденсатора указывают букву «К»).
- Конденсаторы изготавливаются с применением плёночного диэлектрика. По согласованию с заказчиком возможно изготовление конденсаторов на номинальное напряжение 110/√3 кВ с бумажно-плёночным диэлектриком. В этом случае в обозначении типономинала конденсатора указывают буквы «БП».

Примеры обозначений:

СМАПВ-БП-110/√3-6,4 УХЛ1 Ex; СМАВ-110/√3-6,4 УХЛ1 Ex усиленный; СМА-К-166/√3-14 УХЛ1 Ex В зависимости от исполнения покрышек возможны отличия в габаритных и установочных размерах подставок. Необходимые размеры уточняются при заказе.

ПОДСТАВКИ ИЗОЛИРУЮЩИЕ

Технические характеристики подставок изолирующих

Обозначение типономинала	Применяются для комплектации		
ПИ-1 У1; ХЛ1; УХЛ1	СМ(В, Б)-66/√3-4,4 У1; ХЛ1; УХЛ1		
	СМ(В, Б)-110/√3-6,4 У1; ХЛ1; УХЛ1		
ПИ 2 V4. V П4. VV П4**	СМ(В, Б)-(БП)-110/√3-6,4 У1; ХЛ1; УХЛ1		
ПИ-2 У1; ХЛ1; УХЛ1**	СМА(В)-(БП)-110/√3-6,4 УХЛ1 (Ех)*		
	СМА(В)-220/√3-3,2 УХЛ1 (Ех)*		
□I4 /I/)	СМА(В)-(БП)-(К)-110/√3-6,4 УХЛ1 (Ех)		
ПИ-(К)-5 УХЛ1**	СМА(В)-220/√3-3,2 УХЛ1 (Ех)*		
	СМА(В)-(К)-133/√3-18,6 УХЛ1		
FIA (I/) () () (FIA	СМА(В, Б, БВ)-(К)-166/√3-14(18) УХЛ1 (Ех)*		
ПИ-(К)-6 УХЛ1	СМА(В)-(К)-188/√3-12 УХЛ1 (Ех)*		
	СМАВ-(БП)-110/√3-6,4 УХЛ1 (Ех)*		

В обозначении конденсаторов:

КОЛОНКИ КОНДЕНСАТОРОВ СВЯЗИ

Назначение

Для обеспечения высокочастотной связи на частотах от 24 до 1000 кГц в линиях электропередачи номинальным напряжением 220, 330, 500, 750 кВ переменного тока частоты 50 и 60 Гц.

Технические характеристики колонок конденсаторов связи

Обозначение типономинала	Номинальное значение		
Ooosha teline milonominada	Напряжение, кВ	Ёмкость, нФ	
КСА-(БП)-(К)-220/√3-3,2 УХЛ1 (Ех)	2207/7	7.3	
КСА1-(БП)-(К)-220/√3-3,2 УХЛ1 (Ех)	220/√3	3,2	
КСА-(БП)-(К)-330/√3-2,13 УХЛ1 (Ех)		2,13	
КСА1-(K)-330/√3-7(2,13; 9) УХЛ1 (Ex)	330/√3	2.47.77.0	
КСАБ1-330/√3-7(9) УХЛ1 (Ех)		2,13/7/9	
КСА1-(К)-500/√3-4,67(6) УХЛ1 (Ех)	F00.47	4.67.16	
КСАБ1-500/√3-4,67(6) УХЛ1 (Ех)	500/√3	4,67/6	
КСА1-(K)-750/√3-3 УХЛ1 (Ex)	750/√3	3	

В зависимости от исполнения покрышек возможны отличия в габаритных и установочных размерах колонок. Необходимые размеры уточняются при заказе.

Обозначение

Колонки конденсаторов связи комплектуются конденсаторами серии СМА.

В обозначении колонок первая цифра типа — номинальное напряжение в киловольтах;

вторая – емкость в нанофарадах;

КС — колонка конденсаторов связи;

А — армированная покрышка;

Б — категория электрооборудования в зависимости от длины пути утечки внешней изоляции;

БП — бумажно-плёночный диэлектрик;

К – колонки изготавливаются в композитном корпусе с силиконовым оребрением.

^{* «}Ex» — взрывобезопасное исполнение.

^{**} В зависимости от исполнения покрышек возможны отличия в габаритных и установочных размерах подставок. Необходимые размеры уточняются при заказе.

Установка ВЧ заградителей на конденсаторы связи производства ТОО «Усть-Каменогорский конденсаторный завод» (ТОО «УККЗ»)

Габаритно-массо- вые характеристики Тип ВЧ-заградителя ВЧ-заградителя		Тип конденсатора связи	Тип переходного устройства	Примечание	
	Вес, кг	Высота х диаметр, мм			
ВЗ-100-0,5 УХЛ1 ВЗ-200-0,5 УХЛ1	25 40	824×316	СМПВ-66/√3-4,4 У1 СМПБВ-66/√3-4,4 У1	Кронштейны под конденсатор связи типа АВЛБ.745322.078 ЗАО «НПП «ЭИС»	
В3-400-0,25 УХЛ1 В3-400-0,5 УХЛ1 В3-400-1,0 УХЛ1	67 92 170	851×760 1373×760 1949×760	Конденсаторы связи в неармиро- ванных фарфоровых покрышках		
В3-630-0,25 УХЛ1 В3-630-0,5 УХЛ1 В3-630-0,5 УХЛ1 монолитный	100 167 100	1000×1060 1456×1060 920×780	СМПВ-110/v/3-6,4 У1 Конденсаторы связи в неармиро- ванных фарфоровых покрышках	Кронштейны под конденсатор связи типа АВЛБ.745322.085 ЗАО «НПП «ЭИС»	
ВЗ-400-0,25 УХЛ1 ВЗ-400-0,5 УХЛ1 ВЗ-630-0,5 УХЛ1 монолитный	67 92 100	851×760 1373×760 920×780		Кронштейны под конденсатор связи типа АВЛБ.745322.085 ЗАО «НПП «ЭИС»	
B3-630-0,25 YXЛ1 B3-630-0,5 YXЛ1 B3-630-0,5 YXЛ1 B3-630-0.5 YД YXЛ1 B3-630-1,0 YXЛ1 (\$600 κΓι) B3-630-1,0 YXЛ1 (92-1000 κΓι) B3-1250-0,1 YXЛ1 B3-1250-0,5 YXЛ1 B3-1250-0,5 YXЛ1 B3-2000-0,1 Д YXЛ1	100 167 138 202 178 268 167 220 300 260	1000×1060 1456×1060 847×980 1193×980 763×1060 1640×1390 1060×950 1235×1070 1540×1250 1060×1060	СМА-110/v3-6,4 УХЛ1 усиленного исполнения в армированных фарфоровых покрышках. Сейсмостой-кость — 6 баллов по шкале MSK-64.	Пьедестал уни- версальный АВ- ЛБ.301313.013CБ ЗАО «НПП «ЭИС»	При сейсмостойкости 9 баллов по шкале MSK-64 необходим запрос заводу изготовителю.

Примечание:

- 1. Кронштейны и пьедесталы для установки высокочастотных заградителей на конденсаторы связи включаются в спецификацию отдельной позицией.
- 2. При установке ВЧ заградителей на конденсаторы связи во всех других случаях, не рассмотренных в данной таблице, необходимо согласование с заводом изготовителем.

Установка ВЧ-заградителей на конденсаторы связи производства ОАО «Серпуховский конденсаторный завод «КВАР» (ОАО «СКЗ «КВАР»)

Класс напряжения, кВ	Тип ВЧ-заградителя	вые ха	тно-массо- рактеристики радителя	Тип конденсатора связи, Тип переходного тип покрышки устройства		Примечание	
Класс наг кВ		Bec, кг	Высота х диаметр, мм		, , , , , , , , , , , , , , , , , , , ,		
	ВЗ-100-0,5 УХЛ1 ВЗ-200-0,5 УХЛ1	25 40	824×316	СМП (СМПБ)-66/v3-4,4 У1; ХЛ1;	Кронштейны под конденсатор связи типа АВЛБ.745322.078 ЗАО «НПП «ЭИС»		
35	ВЗ-400-0,25 УХЛ1 ВЗ-400-0,5 УХЛ1 ВЗ-400-1,0 УХЛ1	67 92 170	851×760 1373×760 1949×760	СМП (СМПБ)-969/53-4,4 71, XЛП, УХЛ1; Т1. Конденсаторы и подставки выпускаются по ГОСТ 15581-80 в неармированных фарфоровых покрышках П 850/130 и П 400/130 соответственно. Сейсмостойкость — 6 баллов по шкале MSK-64.	Кронштейны под конденсаторы связи типа АВЛБ.745322.085 ЗАО «НПП «ЭИС»		
	В3-630-0,25 УХЛ1 В3-630-0,5 УХЛ1 В3-630-0,5 УХЛ1 монолитный	100 167 100	1000×1060 1456×1060 920×780		Пъедестал универ- сальный АВЛБ.301313.013CБ ЗАО «НПП «ЭИС»		
	В3-400-0,25 УХЛ1 В3-400-0,5 УХЛ1 В3-630-0,5 УХЛ1 монолитный	67 92 100	851×760 1373×760 920×780	СМП (СМПБ)-110/V3-6,4 У1; ХЛ1; УХЛ1; Т1. Конденсаторы связи в армированных фарфоровых покрышках РКСА 1270/100 с подставкой из неармированной фарфоровой покрышки П400/130. Сейсмостойкость конденсаторов 6 баллов по шкале MSK-64.	Кронштейны под конденсатор связи типа АВЛБ 745322.085 ЗАО «НПП «ЭИС»	По требованию заказчика заводом-изготовителем могут быть изготовлены конденсаторы связи с сейсмостойкостью до 9 баллов по шкале MSK-64. В типе конденсаторов указывается буква «С».	
110	B3-630-0,25 УХЛ1 B3-630-0,5 УХЛ1 B3-630-0,5 УД УХЛ1 B3-630-0.5 УД УХЛ1 B3-630-1,0 УХЛ1 (≼600 кГц) B3-630-1,0 УХЛ1 (92-1000 кГц) B3-1250-0,1 УХЛ1 B3-1250-0,25 УХЛ1 B3-1250-0,5 УХЛ1 B3-2000-0,1 Д УХЛ1 B3-2000-0,25 УХЛ1	100 167 138 202 178 268 167 220 300 260 347	1000×1060 1456×1060 847×980 1193×980 763×1060 1640×1390 1060×950 1235×1070 1540×1250 1060×1060 1100×1235	СМПУ (СМПБУ)-110/v3-6,4 У1; ХЛ1; УХЛ1; Т1. Конденсаторы связи в армиро- ванных фарфоровых покрышках РКСА 1290/170 с подставкой из неармированной фарфоро- вой покрышкиП 400/265 Сейсмостойкость конденсаторов 6 баллов по шкале MSK-64.	Пьедестал универ- сальный АВЛБ.301313.013CБ ЗАО «НПП «ЭИС»		

Примечание:

- 1. При другой степени загрязнения по ГОСТ 9920–89, не указанной в таблице, необходимо запросить завод-изготовитель.
- 2. Кронштейны и пьедесталы для установки высокочастотных заградителей на конденсаторы связи включаются в спецификацию отдельной позицией.
- 3. При установке ВЧ заградителей на конденсаторы связи во всех других случаях, не рассмотренных в данной таблице, необходимо согласование с заводом-изготовителем.

ПВЗУ-Е

ПРИЕМОПЕРЕДАТЧИК ВЫСОКОЧАСТОТНЫХ ЗАЩИТ

Назначение

Аппарат предназначен для передачи и приёма сигналов релейной защиты по высокочастотному (ВЧ) каналу связи, образованному проводами воздушных линий электропередач напряжением 35 – 750 кВ.

Основные функции

- Передача и приём сигналов релейной защиты в комплекте с устройствами релейной защиты.
- Контроль исправности канала связи (наличие запаса по затуханию ВЧ сигнала), аппаратной части ВЧ поста и цепей управления от терминала защиты с действием на внешнюю аварийную и/или предупредительную сигнализацию.
- Запись в энергонезависимую память данных о работе аппарата при пусках РЗ (до 32 осциллограмм) и неисправностях, обнаруженных устройством АПК (до 64 записей), с фиксацией реального времени события.
- Передача данных.
- Связь в режиме переговорного устройства между всеми пунктами канала связи.
- Передача информации в АСУ ТП.

Технические характеристики

Наименование	Значение	
Габариты	483×266×379 мм	
Масса, нетто (брутто)	17 (29) кг.	

Конструкция корпуса

Соответствует стандарту МЭК 297.

АКА «КЕДР»

АППАРАТУРА ПЕРЕДАЧИ СИГНАЛОВ-КОМАНД РЗ И ПА

Технические характеристики

Наименование	Значение
Габариты	483×266×379 мм
Масса, нетто (брутто) передатчик / при- ёмник	17 (29) кг / 16 (29) кг.

Конструкция корпуса

Соответствует стандарту МЭК 297.

Назначение

Аппарат предназначен для передачи и приёма сигналовкоманд релейной защиты и противоаварийной автоматики (РЗ и ПА)

- высокочастотным (ВЧ) трактом по ЛЭП 35-1150кВ;
- по выделенной оптоволоконной линии связи ВОЛС;
- низкочастотным (НЧ) трактом по физическим линиям связи или через аппаратуру уплотнения.

Основные функции

- Передача и приём сигналов-команд РЗ и ПА. Передача 32 команд ПА в ВЧ/НЧ- канале одночастотным, двухчастотным последовательным кодом или их комбинацией. При использовании двухчастотного кода возможно увеличение числа передаваемых команд до 64 в одной рабочей полосе — 4кГц;
- трансляция команд ПА на промежуточном пункте ВЧ-канала цифровым стыком с нескольких (до 4) приемников Rx на один передатчик Тx;
- непрерывный автоматический контроль исправности ВЧ-тракта.

КЕДР-2.0

АППАРАТУРА ПЕРЕДАЧИ СИГНАЛОВ-КОМАНД РЗ И ПА

Назначение

Предназначен для передачи и приема сигналов-команд релейной защиты и противоаварийной автоматики (РЗ и ПА).

Среда передачи сигнала:

- высокочастотным (ВЧ) трактом по ЛЭП (35–1150 кВ);
- по выделенной оптоволоконной линии связи ВОЛС;
- сети SDH/PDH цифровой канал связи (G. 703 E1).

Технические характеристики

Наименование	Значение
Габариты • изделия • упаковки	483×266×379 мм 500×550×360 мм
Масса, нетто (брутто): приемопередатчик	16 (29) кг.

Основные функции

Передача и прием сигналов-команд РЗ и ПА

При передаче и приеме сигналов команд по ВЧ каналу связи: Дуплексный режим работы в ВЧ канале обеспечивается как при разнесенном, так и при смежном расположении полос передачи/приема.

Команды могут передаваться в ВЧ канале: одночастотным, параллельным двухчастотным, двухчастотным последовательным кодом или их комбинацией.

- передача 32-х команд в одном направлении;
- прием 32-х команд в одном направлении;
- передача и прием 32-х команд РЗ и ПА в обоих направлениях;
- передача 64-х команд в одном направлении*;
- прием 64-х команд в одном направлении*.

Реализована возможность выбора занимаемой полосы частот для приема и передачи сигналов команд: $4\kappa\Gamma$ ц (2+2 к Γ ц), $8\kappa\Gamma$ ц (4+4 к Γ ц).

Передача команд по ВЧ каналу связи, выполняется последовательно (по очереди), в соответствии с заданным приоритетом.

Длительность передачи и приоритет каждой команды можно настроить индивидуально для любой среды передачи.

Коммуникационные интерфейсы и протоколы связи КЕДР-2.0 обеспечивает:

- подключение к ЛВС шине возможно по одному из протоколов МЭК 61850 (Ethernet), МЭК 60870-5-104(Ethernet), МЭК 60870-5-101(RS485);
- функции синхронизации времени по протоколам РТР (IEEE1588), SNTP, а также синхронизацию с внешним GPS приёмником по NMEA-0183;
- поддержку протокола резервирования PRP в рамках MЭК 61850-8-1GOOSE/MMS;
- подключение к коммуникационным сетям Ethernet по оптическому (10/100 Base FX) или электрическому (10/100 Base TX) интерфейсу;

Реализация протокола МЭК 61850 в КЕДР-2.0

КЕДР-2.0 интегрируется в сети МЭК 61850, осуществляя прием/передачу команд ПА при помощи GOOSE сообщений (МЭК 61850-8-1GOOSE) и информационный обмен с АСУ ТП по МЭК 61850-8-1MMS. Реализация протокола в КЕДР-2.0 соответствует корпоративному профилю ПАО «ФСК ЕЭС» и стандарту МЭК 61850-8-1.

^{*} При использовании двухчастотного кода возможно увеличение числа принимаемых/передаваемых команд до 64 в одной рабочей полосе (4 кГц).

СОВМЕСТИМОСТЬ С АППАРАТУРОЙ

КЕДР-2.0 обеспечивает возможность совместной работы в одном ВЧ канале связи с аппаратурой передачи команд противоаварийной автоматики следующих типов:

ВЧТО-М, АНКА-АВПА, АКПА-В, АКАП-В, АКА «КЕДР», АК «ТриТОН»

КЕДР-2.0 обеспечивает возможность совместной работы в одном канале связи ВОЛС/МИХ с аппаратурой передачи команд противоаварийной автоматики следующих типов:

АКА «КЕДР» — ОК, АК «ТриТОН» секция БУК.

ЦВК-16

Назначение

Аппаратура высокочастотной связи «Цифровой высокочастотный канал-16» (ЦВК-16) предназначена для организации телефонных каналов, каналов телемеханики и передачи данных межмашинного обмена по высокочастотным каналам связи на базе ЛЭП в полосе от 4 до 64 кГц.

Конструкция

Аппаратура состоит из двух кассет: кассеты усилителя мощности с фильтром входа и линейным фильтром, а также кассеты обработки сигналов с функциями абонентских окончаний. В аппаратуре реализован режим работы на сомкнутых или разнесенных частотах по МЭК-495. Фильтры — перекоммутируемые с возможностью задания перемычками требуемых номинальных полос передачи и приема.

Технические характеристики аппаратуры ЦВК-16 (Ревизия 3)

	ЦВК-16Т	ЦВК-16ПТ	ЦВК-16МТ
Габаритные размеры кассеты усилителя мощно- сти с фильтром входа и линейным фильтром 6U	ширина— 84HP, глубина— 309 мм; 40 Вт вес 13,7 кг; 80 Вт вес 14,6 кг		
Габаритные размеры кассеты обработки сигналов 6U	ширина— 84HP, глубина— 309 мм; вес 10,4 кг	ширина— 84HP, глубина— 309 мм; вес 10,7 кг	ширина— 84HP, глубина— 309 мм; вес 9,6 кг

АК «ТРИТОН» АППАРАТНЫЙ КОМПЛЕКС

Назначение

Аппаратный комплекс «Тритон» предназначен для организации комплексных каналов связи в энергосистемах.

Основные функции

Комплекс совмещает в одном канале связи передачу:

- сигналов команд РЗ и ПА (разрешающих и телеотключения);
- сигналов связи: речи, телемеханики (ТМ), межмашинного обмена (ММО);
- сигналов направленных и полупроводниковых ВЧ защит (сигналов ВЧБ).

Конструкция корпуса

соответствует стандарту МЭК 297 Аппаратный комплекс состоит из каналообразующей ВЧ секции (БМК) и секции интерфейсов (БУК).

Технические характеристики

Наименование	Значение
Секция БМК	
Габариты	482,6×179×380 мм
Macca	12 кг
Секция БУК	
Габариты	482,6х135х380 мм
Масса	7 кг

АКСТ «ЛИНИЯ-Ц»

АППАРАТУРА КАНАЛОВ СВЯЗИ, ТЕЛЕМЕХАНИКИ, РЗ И ПА ПО ЛИНИЯМ ЭЛЕКТРОПЕРЕДАЧ

Назначение

Аппаратура с цифровой обработкой сигнала АКСТ «ЛИНИЯ-Ц» предназначена для организации высокочастотных каналов ТФ, ТМ, ПД, РЗ и ПА по высоковольтным ЛЭП 35...1150 кВ в информационных структурах АСКУЭ, диспетчерского и технологического управления энергосистемами и энергообъектами.

Основные функции

- представление обслуживающему персоналу обобщенных данных о состоянии станции;
- дистанционный контроль и управление обеими станциями от сервисного блока и/или ПК;
- электронное управление параметрами
- архивирование технического состояния с точностью 1
- управление системой связи на основе аппаратуры АКСТ от персонального компьютера через интернет;
- соединение с контроллером ТМ для контроля за обледенением ЛЭП.

РЕЗИСТОР ОКОНЕЧНЫЙ РО-75/100

Назначение

Резистор оконечный PO-75/100 предназначен для подключения в тракт фильтру присоединения со стороны ВЧ-кабеля.

Технические характеристики

Наименование	Значение
Активное сопротивление R, Ом	75 ± 5%
Полное сопротивление Z, Ом	75 ± 10%
Затухание несогласованности Анс, дБ, не менее	15
Рассеиваемая мощность, R, Bт, не менее	100
Степень защиты согласно ГОСТ 14256-96	IP 54
Габариты	350×330×165 мм
Macca	9 кг

Условия эксплуатации

Климатическое исполнение согласно ГОСТ 15150-69 — УХЛ1.

УСПД-ВЛ-М

УСТРОЙСТВО СБОРА И ПЕРЕДАЧИ ДАННЫХ ДЛЯ КОНТРОЛЯ СОСТОЯНИЯ КОНДЕНСАТОРОВ СВЯЗИ

Назначение

Устройство сбора и передачи данных (УСПД-ВЛ-М) предназначено для автоматизированного определения изменения тока утечки высоковольтных конденсаторов связи.

Конструкция

В телекоммуникационных шкафах 19 дюймов 42U.

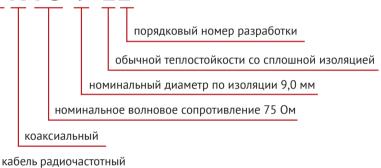
Основные функции

- определение изменения емкости конденсаторов связи (стандартное количество конденсаторов связи 8 штук с возможностью увеличения до 16, 24, 32 по запросу);
- отображение параметров (емкости, изменения емкости) на полноцветном жидкокристаллическом дисплее;
- выдача информации о нормальном, предупредительном или аварийном значении емкости конденсаторов связи при помощи встроенных датчиков, установленных в фильтрах присоединения или шкафах отбора напряжения производства ЗАО «НПП «ЭИС»;
- передача измеряемых параметров в АСУ ТП по интерфейсу Ethernet 100 Base-T, протокол MODBUS TCP.

КАБЕЛЬ РК 75-9-12

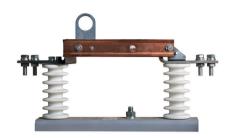
Назначение

Кабель коаксиальный радиочастотный РК 75-9-12 предназначен для трансляции радио и видеосигналов в диапазоне от метровых до сантиметровых волн


Конструкция

- внутренний проводник из медной проволоки номинальным диаметром 1,4 мм;
- изоляция из полиэтилена низкой плотности, наложенная на внутренний проводник до достижения диаметра по изоляции 9,00±0,25 мм;
- внешний проводник в виде оплётки из медных проволок номинальным диаметром 0,2 мм, наложенных под углом 50 60° с плотностью 88 92%;
- оболочка из ПВХ пластиката, наложенная на внешний проводник до достижения наружного диаметра 12,0±0,4 мм.

Обозначение


Массо-габаритные характеристики

Наименование	Значение
Расчетная масса (вес)	189,0 кг/км
Наружный диаметр	12,0 мм
Минимальный барабан	№ 8 — 360 м
Максимальная длина в бухте	264 м

Технические характеристики

Наименование	Значение
Волновое сопротивление	75±2,5 Ом
Коэффициент затухания	не более 0,12 дБ/м на частоте 0,2 ГГц не более 0,75 дБ/м на частоте 3,0 ГГц
Напряжение начала внутренних разрядов в изоляции	не менее 5,0 кВ частотой 50 Гц
Испытательное переменное напряжение изоляции	10 кВ частотой 50 Гц
Сопротивление связи	не более 200 мОм/м
Электрическая ёмкость	67 пФ/м
Коэффициент укорочения длины волны	1,52
Сопротивление изоляции при 20 °C	не менее 5,0 ГОм•км
Строительная длина	не менее 100 м
Маломеры в партии	не более 20% кусками от 10 м
Минимальный радиус изгиба	120 мм при хранении и транспортировке 60 мм при монтаже от 5 °C и выше
Диапазон рабочих температур	−40+85 °C
Срок службы	не менее 8 лет с даты приёмки
Минимальная наработка	1000 ч при 85 °C 5000 ч при 70 °C 10000 ч при 50 °C

РАЗЪЕДИНИТЕЛИ РВЗ, РВФЗ, РВО, РВФ ВНУТРЕННЕЙ УСТАНОВКИ

Обозначение

исполнения разъединителей и привода:

Разъединитель РВО-10/400 УХЛ1, 2

Р – разъединитель;

В — внутренней установки;

0 – однополюсный;

10 — номинальное напряжение, кВ;

400 — номинальный ток, А;

YXЛ - климатическое исполнение по ГОСТ 15150;

1 (2) — категория размещения по ГОСТ 15150.

Назначение

Разъединители внутренней установки переменного тока высокого напряжения серии PBO, рассчитанные для работы в сети напряжением 10 кВ, предназначены:

- для отключения и включения под напряжением участков электрической цепи высокого напряжения при отсутствии нагрузочного тока и для изменения схемы соединения;
- для обеспечения безопасного производства работ на отключенном участке;
- для включения и отключения зарядных токов воздушных и кабельных линий, тока холостого хода трансформаторов и токов небольших нагрузок.

Условия эксплуатации

Разъединители изготовляются в исполнении УХЛ категории 2 для работы на высоте до 1000 м над уровнем моря; в помещениях, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на открытом воздухе и имеется сравнительно свободный доступ наружного воздуха, например в палатках, кузовах, прицепах, металлических помещениях без теплоизоляции, а также в кожухе комплектного устройства или под навесом, чтобы избежать прямого воздействия и атмосферных осадков на изделия.

Технические характеристики

Наименование	Значение
Напряжение	
• номинальное	10 кВ
• наибольшее	12 кВ
Номинальный ток	400 A
Устойчивость при сквозных токах короткого замыкания	
Амплитуда предельного сквозного тока	41 KA
Предельный ток термической устойчивости ля главных ножей в течение 4с	16 кА
Предельный ток термической устойчивости для заземляющих ножей в течение 1с	

ПРИЛОЖЕНИЯ

Таблицы и графики для определения частотных диапазонов. Характеристики оборудования. Чертежи.

Формулы и таблицы для расчета примерных диапазонов частот заграждения высокочастотных заградителей ВЗ

В данных приложениях приведены формулы для расчета и таблицы примерных диапазонов частот заграждения высокочастотных заградителей ВЗ, собранных по двухконтурной и трехконтурной схемам настройки ЭН.

Трехконтурная схема высокочастотного заградителя применяется только в тех случаях, когда применение двухконтурной схемы невозможно.

В Приложении 1 в Таблицах 1.1–1.2 приведены примерные диапазоны частот заграждения заградителей ВЗ с индуктивностью реакторов 0,1 мГн; 0,25 мГн; 0,5 мГн; 1,0 мГн; 2,0 мГн для двухконтурной схемы настройки ЭН.

$$F_{B.rp.} = \frac{F_{H.rp.}}{1,06 - \frac{5,9 \times L_{peakt} \times F_{H.rp.}}{R_{z min}}}$$

Таблицы 1.1–1.2 составлены в соответствии с аппроксимированным выражением для определения диапазонов частот заграждения высокочастотных заградителей, собранных по двухконтурной схеме

где

 $F_{_{\rm H\, ID}}, F_{_{\rm B\, ID}}$ — нижняя и верхняя частоты полосы заграждения, соответственно, кГц;

 $L_{_{\mathrm{neakt}}}$ — индуктивность реактора на частоте 100 кГц, мГн;

R_{z min} — минимально допустимая величина активной составляющей полного сопротивления заградителя в заданной полосе частот. Ом.

В Приложении 1 в Таблицах 1.3–1.4 приведены примерные диапазоны частот заграждения заградителей ВЗ с индуктивностью реакторов 0,1 мГн; 0,25 мГн; 0,5 мГн; 1,0 мГн; 1,5 мГн; 2,0 мГн для трехконтурной схемы настройки ЭН.

$$F_{\text{B.rp.}} = \frac{F_{\text{H.rp.}}}{1,063 - \frac{7,776 \times L_{\text{peakt}} \times F_{\text{H.rp.}}}{R_{\text{z min}}}}$$

Таблицы 1.3–1.4 составлены в соответствии с аппроксимированным выражением для определения диапазонов частот заграждения высокочастотных заградителей, собранных по трехконтурной схеме

где

Где $F_{_{\!\!H,\Gamma\!D}}, F_{_{\!\!B,\Gamma\!D}}$ — нижняя и верхняя частоты полосы заграждения, соответственно, кГц;

 $L_{\rm peakt}$ — индуктивность реактора на частоте 100 кГц, мГн;

R _{z min} — минимально допустимая величина активной составляющей полного сопротивления заградителя в заданной полосе частот, Ом. Вышеуказанная формула используется для работы диапазонов частот заграждения в области от 16 до 1000 кГц.

Для ВЛ с волновым сопротивлением 450 Ом (35...220 кВ) в полосе частот 160...1000 кГц и для ВЛ с волновым сопротивлением менее 450 Ом (330...750 кВ) в полосе частот 145...1000 кГц может быть использована схема заградительного фильтра верхних частот.

Трехконтурная схема расширяет полосу заграждения высокочастотного заградителя ориентировочно на 20%.

Таблица 1.1. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реактора 0.1 мГн, 0.25 мГн, 0.5 мГн в зависимости от минимальной допустимой величины активной составляющей полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для двухконтурной схемы настройки ЭН

реализация возможна РЗ класса 630 и ниже РЗ класса 1250 и ниже РЗ класса 3150 и ниже подлежит обязательному согласованию после согласования

Lреактора=0,1 мГн		Lpeaктора= 0,5 мГн									
Rzмин, Ом 440 470 650	1000	Rzмі 440 470	ин, Ом 650 1000	Rzмин, Ом 440 470 650 1000							
fн, fв, fн, fв, fн, fв,	fн, fв, fн,	fн, fв, fн, fв,	fн, fв, fн, fв,	fн, fв, fн, fв, fн, fв, fн, fв,							
fH, KĪU fB, KĪU KĪU <th< td=""><td>kfu kfu kfu 128 130 35 129 131 36 130 132 37 131 136 130 38 132 134 39 133 134 39 134 136 41 135 137 42 136 138 43 137 139 44 46 140 143 47 141 144 46 140 143 47 141 144 48 142 145 49 143 147 151 144 145 149 153 150 144 147 151 144 148 152 154 144 147 151 154 148 152 150 154 158 152 159 144 144 147 151 155 58 152 159 154 158 152 159 153 157 160 162</td><td>KFU KFU KFU KFU KFU KFU KFU KFU AST 35 37 39 38 37 39 38 40 39 41 40 42 40 42 40 43 41 44 42 45 42 45 42 45 42 45 43 46 43 44 47 44 48 45 48 45 49 46 50 47 51 47 52 48 52 48 53 49 54 50 55 50 56 51</td><td>fH, fB, fH, fB, kfu kfu</td></th<> <td> </td>	kfu kfu kfu 128 130 35 129 131 36 130 132 37 131 136 130 38 132 134 39 133 134 39 134 136 41 135 137 42 136 138 43 137 139 44 46 140 143 47 141 144 46 140 143 47 141 144 48 142 145 49 143 147 151 144 145 149 153 150 144 147 151 144 148 152 154 144 147 151 154 148 152 150 154 158 152 159 144 144 147 151 155 58 152 159 154 158 152 159 153 157 160 162	KFU KFU KFU KFU KFU KFU KFU KFU AST 35 37 39 38 37 39 38 40 39 41 40 42 40 42 40 43 41 44 42 45 42 45 42 45 42 45 43 46 43 44 47 44 48 45 48 45 49 46 50 47 51 47 52 48 52 48 53 49 54 50 55 50 56 51	fH, fB, fH, fB, kfu kfu								

Таблица 1.1. (продолжение)

	Lpeaктора= 0,25 мГн										Lреактора= 0,5 мГн												
	140	۸.	Rzми 70		550	10	000		40	,	Rzмі 170		550	11	000		40	,	Rzми 170	ін, Ом	н, Ом 650 1000		
fн,	fB,	fH,	fв,	fн,	fB,	fH,	fB,	fH,	fB,	fн,	fB,	fн,	fB,	fн,	fB,	fн,	fв,	fн,	fB,	fн,	fB,	fH,	fB,
кГц 149	кГц 173	кГц 149	кГц 170	кГц 170	кГц 187	кГц 207	кГц 220	кГц 114	кГц 168	кГц 115	кГц 164	кГц 125	кГц 161	кГц 141	кГц 165	кГц 101	кГц 263	кГц 102	кГц 242	кГц 107	кГц 186	кГц 118	кГц 165
150	174	150	172	171	188	208	221	115	170	116	166	126	162	142	166	101 102 103	271	103	249	107 108 109	189	119 120	167
151 152	176 177	151 152	173 174	172 173	190 191	209	223 224	116 117	172 175	117 118	168 171	127 128	164 166	143 144	168 169	104	278 286	104 105	255 261	110	192 196	121	169 172
153 154	178 180	153 154	176 177	174 175	192 194	211 212	225 226	118 119	177 180	119 120	173 175	129 130	168 169	145 146	171 172	105 106	294 303	106 107	268 275	111 112	199 203	122 123	174 176
155 156	181 183	155 156	179 180	176 177	195 196	213 214	227 229	120 121	182 184	121 122	177 180	131 132	171 173	147 148	174 175	107 108	312 321	108 109	282 290	113 114	206 210	124 125	178 180
157 158	184 186	157 158	181 183	178 179	198 199	215 216	230 231	122 123	187 189	123 124	182 184	133 134	175 177	149 150	177 178	109 110	331 341	110 111	297 305	115 116	213 217	126 127	183 185
159 160	187 189	159 160	184 186	180 181	200 202	217 218	232 234	124 125	192 195	125 126	187 189	135 136	179 180	151 152	180 181	111 112	351 362	112 113	313 322	117 118	221 224	128 129	187 189
161 162	190 192	161 162	187 189	182 183	203 204	219 220	235 236	126 127	197 200	127 128	192 194	137 138	182 184	153 154	183 184	113 114	373 385	114 115	330 340	119 120	228 232	130 131	192 194
163 164	193 195	163 164	190 192	184 185	206 207	221 222	237 238	128 129	202 205	129 130	196 199	139 140	186 188	155 156	186 187	115 116	397 410	116 117	349 359	121 122	236 240	132 133	196 199
165 166	196 198	165 166	193 194	186 187	208 210	223 224	240 241	130 131	208 211	131 132	201 204	141 142	190 192	157 158	189 191	117 118	424 438	118 119	369 380	123 124	245 249	134 135	201 204
167 168	199 201	167 168	196 197	188 189	211 212	225 226	242 243	132 133	213 216	133 134	206 209	143 144	194 196	159 160	192 194	119 120	453 469	120 121	391 402	125 126	253 258	136 137	206 208
169 170	202 204	169 170	199 200	190 191	214 215	227 228	245 246	134 135	219 222	135 136	212 214	145 146	198 200	161 162	195 197	121 122	486 504	122 123	414 427	127 128	262 267	138 139	211 213
171 172	205 207	171 172	202 203	192 193	216 218	229 230	247 248	136 137	225 228	137 138	217 220	147 148	202 204	163 164	198 200	123 124	522 542	124 125	440 453	129 130	271 276	140 141	216 218
173	208 210	173	205	194 195	219	231	250	138 139	231	139 140	222	149	206 208	165 166	202 203	125	563	126 127	468	131	281	142	221
174 175	212	174 175	206	196	220 222	232	251 252	140	233 237	141	225 228	150 151	210	167	205	126 127	585 609	128	483 498	132 133	286 291	143 144	224 226
176 177	213 215	176 177	209 211	197 198	223 224	234 235	253 255	141 142	240 243	142 143	231 233	152 153	212 214	168 169	206 208	128 129	634 661	129 130	515 532	134 135	296 301	145 146	229 232
178 179	216 218	178 179	212 214	199 200	226 227	236 237	256 257	143 144	246 249	144 145	236 239	154 155	216 218	170 171	210 211	130 131	689 720	131 132	550 570	136 137	307 312	147 148	234 237
180 181	219 221	180 181	215 217	201 202	229 230	238 239	258 260	145 146	252 255	146 147	242 245	156 157	220 223	172 173	213 214	132	1000	133 134	590 612	138 139	318 323	149 150	240 242
182 183	223 224	182 183	218 220	203 204	231 233	240 241	261 262	147 148	259 262	148 149	248 251	158 159	225 227	174 175	216 218			135 136	634 658	140 141	329 335	151 152	245 248
184 185	226 227	184 185	221 223	205 206	234 235	242 243	263 265	149 150	265 269	150 151	254 257	160 161	229 231	176 177	219 221			137 138	684 711	142 143	341 347	153 154	251 254
186 187	229 231	186 187	225 226	207 208	237 238	244 245	266 267	151 152	272 276	152 153	260 263	162 163	233 236	178 179	223 224			139	1000	144 145	354 360	155 156	257 260
188 189	232 234	188 189	228 229	209 210	240 241	246 247	268 270	153 154	279 283	154 155	267 270	164 165	238 240	180 181	226 228					146 147	367 374	157 158	263 266
190 191	235 237	190 191	231 232	211 212	242 244	248 249	271 272	155 156	286 290	156 157	273 276	166 167	242 245	182 183	229 231					148 149	381 388	159 160	269 272
192 193	239 240	192 193	234 236	213 214	245 247	250 251	273 275	157 158	294 297	158 159	280 283	168 169	247 249	184 185	233 235					150 151	395 402	161 162	275 278
194 195	242 244	194 195	237 239	215 216	248 250	252 253	276 277	159 160	301 305	160 161	286 290	170 171	252 254	186 187	236 238					152 153	410 418	163 164	281 284
196 197	245 247	196 197	240 242	217 218	251 252	254 255	279 280	161 162	309 313	162 163	293 297	172 173	256 259	188 189	240 241					154 155	426 434	165 166	287 291
198 199	249 250	198 199	244 245	219 220	254 255	256 257	281 282	163 164	317 321	164 165	300 304	174 175	261 263	190 191	243 245					156 157	443 451	167 168	294 297
200 201	252 254	200	247 248	221 222	257 258	258 259	284 285	165 166	325 329	166 167	307 311	176 177	266 268	192 193	247 248					158 159	460 469	169 170	301 304
202 203	255 257	202 203	250 252	223 224	260	260 261	286	167	333 338	168 169	315 319	178 179	271 273	194 195	250					160	1000	171	307 311
204	259	204	253	225	261 262	262	288 289	168 169	342	170	322	180	276	196	252 254							172 173	314
205 206	261 262	205 206	255 257	226 227	264 265	263 264	290 291	170 171	346 351	171 172	326 330	181 182	278 281	197 198	256 257							174 175	318 321
207 208	264 266	207 208	258 260	228 229	267 268	265 266	293 294	172 173	355 360	173 174	334 338	183 184	283 286	199 200	259 261							176 177	325 329
209 210	268 269	209 210	262 263	230 231	270 271	267 268	295 297	174 175	365 369	175 176	342 346	185 186	288 291	201 202	263 265							178 179	332 336
211 212	271 273	211 212	265 267	232 233	273 274	269 270	298 299	176 177	374 379	177 178	350 355	187 188	294 296	203 204	266 268							180 181	340 344
213 214	275 276	213 214	268 270	234 235	276 277	271 272	301 302	178 179	384 389	179 180	359 363	189 190	299 302	205 206	270 272							182 183	347 351
215 216	278 280	215 216	272 273	236 237	279 280	273 274	303 305	180 181	394 399	181 182	367 372	191 192	304 307	207 208	274 276							184 185	355 359
217 218	282 283	217 218	275 277	238 239	282 283	275 276	306 307	182 183	404 409	183 184	376 381	193 194	310 313	209 210	278 279							186 187	363 367
219 220	285 287	219 220	278 280	240 241	284 286	277 278	308 310	184 185	415 420	185 186	385 390	195 196	315 318	211 212	281 283							188 189	371 376
221 222	289 291	221 222	282 284	242 243	287 289	279 280	311 312	186 187	426 431	187 188	395 400	197 198	321 324	213 214	285 287							190 191	380 384
223 224	293 294	223 224	285 287	244 245	290 292	281 282	314 315	188 189	437 443	189 190	404 409	199	327 329	215 216	289 291							192 193	388 393
225 226	296 298	225 226	289 291	246 247	294 295	283 284	316 318	190 191	449 455	191 192	414 419	201 202	332 335	217 218	293 295							194 195	397 402
227 228	300 302	226 227 228	291 292 294	247 248 249	295 297 298	285 286	319 320	191 192 193	461 467	192 193 194	424	202 203 204	338 341	218 219 220	295 297 299							195 196 197	406 411
229	304	229	296	250	300	287	322	194	473	195	429 435	205	344	221	301							198	416
230 231	306 307	230 231	298 299	251 252	301 303	288	323 324	195 196	479 486	196 197	440 445	206 207	347 350	222 223	303 305							199 200	420 425
232	309 311	232	301 303	253 254	304 306	290 291	326 327	197 198	492 499	198 199	451 456	208	353 356	224	307 309							201 202	430 435
234 235	313 315	234 235	305 307	255 256	307 309	292 293	328 330	199 200	506 513	200	462 468	210 211	359 363	226 227	311 313							203	440 445
236 237	317 319	236 237	309 310	257 258	310 312	294 295	331 332	201 202	520 527	202 203	474 479	212 213	366 369	228 229	315 317							205 206	450 455
238 239	321 323	238 239	312 314	259 260	313 315	296 297	334 335	203 204	534 542	204 205	485 492	214 215	372 375	230 231	319 321							207 208	460 465
240 241	325 327	240 241	316 318	261 262	317 318	298 299	337 338	205 206	549 557	206 207	498 504	216 217	379 382	232 233	323 325							209 210	471 476
242 243	329 330	242 243	320 321	263 264	320 321	300 301	339 341	207 208	565 573	208 209	510 517	218 219	385 388	234 235	327 329							211 212	482 487
244 245	332 334	244 245	323 325	265 266	323 324	302 303	342 343	209 210	581 589	210 211	523 530	220 221	392 395	236 237	331 333							213 214	493 499
246 247	336 338	246 247	327 329	267 268	326 328	304 305	345 346	211 212	598 606	212 213	537 544	222 223	399 402	238 239	335 337							215 216	504 510
248	340	248	331	269	329	306	347	213	615	214	550	224	406	240	339							217	516

Таблица 1.1. (продолжение)

	Lреактор	ра=0,1 мГн			Lpеактора	а= 0,25 мГн		Lpeaктора= 0,5 мГн								
440	Rzмі 470	ıн, Ом 650	1000	440	Rzмі 470	1H, Ом 650	1000	Rzмин, Ом 440 470 650 1000								
440 fн, fв,	4/0 fн, fв,	650 fн, fв,	1000 fн, fв,	fн, fв,	4/U fн, fв,	650 fн, fв,	1000 fн, fв,	fн, fв,	470 fн, fв,	65U fн, fв,	1000 fн, fв,					
KFU KFU 249 342 250 344 251 346 252 348 251 346 252 348 253 351 254 353 255 355 256 357 257 359 363 260 363 361 265 376 263 371 264 373 265 378 267 380 268 382 271 389 272 391 273 391 273 391 273 397 274 395 275 397 276 400 280 409 281 411 282 43 283 415 284 418 285	Kfu kfu 249 333 250 335 251 336 252 338 255 344 255 344 257 348 258 350 259 352 260 354 261 356 262 358 263 360 265 364 266 366 267 368 269 372 270 374 373 380 279 393 280 395 281 390 279 393 280 395 281 397 282 399 283 401 284 403 287 410 288 412 289 414 291 416 292	Kfu Kfu 270 351 271 332 273 334 273 334 274 337 275 340 277 342 278 344 280 347 281 349 282 350 283 352 284 354 285 355 286 357 287 368 290 363 291 365 292 367 293 368 294 370 295 372 296 374 297 375 308 394 301 382 302 384 303 386 304 387 305 389 300 380 301 382 302	KFLQ KFLQ 307 349 308 350 309 352 310 353 311 354 312 356 313 357 314 358 315 360 316 361 317 363 318 364 319 365 320 367 321 368 322 370 323 371 324 372 325 374 326 375 327 377 328 378 329 379 330 381 331 382 337 391 338 332 338 332 338 332 338 332 338 332 338 336 389	Kfu Kfu 214 624 215 633 216 643 217 652 218 662 219 672 220 682 221 692 222 702 223 713 224 724 225 735 226 747 227 759 228 781 230 795 231 808 232 821 233 835 236 877 237 892 238 907 239 923 240 939 241 955 242 972 243 990 244 1000	KĪu KĪu 215 558 216 565 217 572 218 580 219 587 220 595 221 603 222 611 223 619 224 627 225 635 227 653 228 661 229 670 330 680 231 689 233 708 234 718 235 728 236 738 237 749 241 793 242 805 243 817 244 829 245 841 246 854 247 867 250 907 251 921 252 936 253 951 254	KĪU KĪU 225 409 226 413 227 416 228 420 229 423 230 427 231 431 232 434 233 438 234 442 235 446 236 449 237 453 241 469 242 473 243 477 244 481 245 486 246 490 247 494 248 498 249 503 250 507 251 511 252 515 259 507 251 515 257 539 258 543 257 538 262 562 263 567 266	KFIL KFIL 241 342 242 344 243 346 244 348 245 350 246 352 247 355 249 359 250 361 251 363 252 366 253 368 254 370 255 372 257 377 258 379 259 382 260 384 261 386 262 388 263 391 264 393 265 396 267 400 268 403 270 408 271 410 272 412 273 415 274 417 275 422 276 422 277	кГц кГц	кіц кіц	Kfių Kfių	kfu kfu 218 522 219 529 220 535 221 541 222 548 223 554 224 561 226 574 227 581 228 588 229 595 230 602 231 610 232 647 233 625 234 632 235 640 239 673 240 681 241 690 242 699 243 708 244 717 245 724 246 735 247 745 248 755 251 785 252 795 253 806 254 717 255 828 256					

Таблица 1.1. (продолжение)

		ı	_реактор	оа=0,1 м ин, Ом	ιГн					Lpeaктора= 0,5 мГн Rzмин, Ом												
4	40	4	70		550	10	000	440		470	ін, Ом 6	50	1	000		440		470		650		1000
fн,	fB,	fн,	fB,	fн,	fв,	fн,	fB,	fн, fв,	fн,	fB,	fн,	fB,	fн,	fB,	fH,	fB,	fH,	fB,	fн,	fB,	fн,	fв,
кГц 349	кГц 589	кГц 349	кГц 561	кГц 370	кГц 510	кГц 407	кГц 496	кГц кГц	кГц	кГц	кГц	кГц	кГц 341	кГц 612	кГц							
50 51	592 595	350 351	563 566	371 372	512 514	408 409	497 499						342 343	615 619								
53	598 601	352 353	569 572	373 374	517 519	410 411	501 502						344 345	622 625								
54 55	604 607	354 355	575 577	375 376	521 523	412 413	504 505						346 347	629 633								
56 57	611 614	356 357	580 583	377 378	525 527	414 415	507 509						348 349	636 640								
58 59	617 620	358 359	586 589	379 380	529 531	416 417	510 512						350 351	643 647								
60 61	623 626	360 361	592 594	381 382	533 535	418 419	513 515						352 353	650 654								
62 63	630 633	362 363	597 600	383 384	537 539	420 421	517 518						354 355	658 661								
64 65	636 639	364 365	603 606	385 386	541 543	422 423	520 521						356 357	665 669								
666 667	642 646	366 367	609 612	387 388	546 548	424 425	523 525						358 359	672 676								
368 369	649 652	368 369	615 618	389 390	550 552	426 427	526 528						360 361	680 684								
370 371	656 659	370 371	621 624	391 392	554 556	428 429	530 531						362 363	688 691								
372 373	662 666	372 373	627 630	393 394	558 560	430 431	533 534						364 365	695 699								
374 375	669 673	374 375	633 636	395 396	563 565	432 433	536 538						366 367	703 707								
376 377	676 679	376 377	639 642	397 398	567 569	434 435	539 541						368 369	711 715								
78 79	683 686	378 379	645 648	399 400	571 573	436 437	543 544						370 371	719 723								
80 81	690 693	380 381	651 654	401 402	576 578	438 439	546 548						372 373	727 731								
382 383	697 700	382 383	658 661	403 404	580 582	440 441	549 551						374 375	735 739								
384 385	704 708	384 385	664 667	405 406	584 587	442 443	553 554						376 377	743 748								
886 887	711 715	386 387	670 673	407 408	589 591	444 445	556 558						378 379	752 756								
88 89	718 722	388 389	677 680	409 410	593 596	446 447	559 561						380 381	760 765								
390 391	726 729	390 391	683 686	411 412	598 600	448 449	563 564						382 383	769 773								
392 393	733 737	392 393	690 693	413 414	602 605	450 451	566 568						384 385	777 782								
394 395	741 744	394 395	696 700	415 416	607 609	452 453	569 571						386 387	786 791								
396 397	748 752	396 397	703 706	417 418	611 614	454 455	573 574						388 389	795 800								
398 399	756 760	398 399	710 713	419 420	616 618	456 457	576 578						390 391	804 809								
400 401	763 767	400 401	717 720	421 422	621 623	458 459	579 581						392 393	813 818								
402 403	771 775	402 403	723 727	423 424	625 628	460 461	583 585						394 395	822 827								
104 105	779 783	404 405	730 734	425 426	630 632	462 463	586 588						396 397	832 836								
406 407	787 791	406 407	737 741	427 428	635 637	464 465	590 591						398 399	841 846								
408 409	795 799	408 409	744 748	429 430	639 642	466 467	593 595						400 401	851 855								
110 111	803 807	410 411	751 755	431 432	644 646	468 469	597 598						402 403	860 865								
412 413	811 815	412 413	759 762	433 434	649 651	470 471	600 602						404 405	870 875								
414 415	820 824	414 415	766 769	435 436	653 656	472 473	603 605						406 407	880 885								
416 417	828 832	416 417	773 777	437 438	658 661	474 475	607 609						408 409	890 895								
118 119	836	418 419	780 784	439 440	663	476 477	610						410 411	900 905								
120	841 845 849	420	788	441	668	478	612 614						412 413	910 916								
121 122	854	421 422	792 795	442 443	670 673	479 480	616 617						414	921								
123 124	858 862	423 424	799 803	444 445	675 678	481 482	619 621						415 416	926 931								
125 126	867 871	425 426	807 811	446 447	680 683	483 484	623 624						417 418	937 942								
427 428	876 880	427 428	814 818	448 449	685 688	485 486	626 628						419 420	948 953								
129 130	884 889	429 430	822 826	450 451	690 693	487 488	630 632						421 422	958 964								
131 132	894 898	431 432	830 834	452 453	695 698	489 490	633 635						423 424	970 975								
133 134	903 907	433	838 842	454 455	700 703	491 492	637 639						425 426	981 986								
35	912 917	435 436	846 850	456 457	705 708	493 494	640 642						427 428	992 1000								
137 138	921 926	437 438	854 858	458 459	710 713	495 496	644 646															
439 440	931 936	439 440	862 866	460 461	715 718	497 498	648 649															
441 442	940 945	441 442	870 874	462 463	721 723	499 500	651 653															
143 144	950 955	443 444	879 883	464 465	726 728	501 502	655 657															
145 146	960	445	887	466	731	503	659															

Таблица 1.1. (продолжение)

		L	реактора	= 0,25 N	1Гн			Lреактора= 0,5 мГн								
			Rzми	н, Ом				Rzмин, Ом								
4	40	4	70	6	50	10	000	4	40	4	70	6	50	10	000	
fн, fв, fн, fв, fн, fв, fн, fв, кГц кГц кГц кГц кГц кГц кГц кГц								fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	

Таблица 1.1. (продолжение)

440
Mathematical Registration Mathematical Registration
site site <th< td=""></th<>
661 986 662 988 663 991 664 993

Таблица 1.2. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реактора 1 мГн, 1.5 мГн, 2 мГн в зависимости от минимальной допустимой величины активной составляющей полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для двухконтурной схемы настройки ЭН

Таблица 1.2. (продолжение)

	Lpeak	гора= 1м	Гн						Lреакто	pa= 1.5N	иГн						Lреакто	ора= 2м	Гн		
	Rzı	иин, Ом							Rzm	ин, Ом							Rzм	ин, Ом			
440	470	6	650	1	000	4	440		470	(650	1	000		440		470	6	550	1	000
fн, fв, кГц кГц	fн, fв, кГц кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГ
		98 99 100 101 102 103 104 92	574 613 656 705 760 823 896 1000	102 103 104 105 106 107 108	222 227 232 238 249 255 261 267 274 280 287 294 301 308 316 324 332 340 358 367 377 387 408 419 431 443 456 469 483 497 512 527 598 611 639 661 684 679 679 792 885 792 885 792 885 792 885 792 885 885 885 885 885 885 885 885 885 88							97 98 99 100 101 102 103 104 105 106 107 108	481 508 538 571 607 648 693 744 803 869 946 1000								

Таблица 1.3. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реактора 0.1 мГн, 0.25 мГн, 0.5 мГн в зависимости от минимальной допустимой величины активной составляющей полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для трехконтурной схемы настройки ЭН

Lpeaktopa
127 131 128 132
440 fH, FB, KFU KFU 29 31 30 32 31 33 32 34 37 35 38 42 39 43 40 45 41 46 42 47 43 49 44 50 45 52 46 53 47 54 48 56 49 57 50 59 51 60 52 62
ра= 0,25 мГн мин, 0м 650 610 610 610 610 610 610 610
1000 fh, fg, kfu kfu kfu
440 fH, KTu KTu 19 21 20 22 21 23 22 25 23 26 24 28 25 29 26 31 27 32 28 34 29 35 30 37 31 39 32 41 33 42 435 46 36 48 37 50 38 52 39 54 40 56 41 58
I 4
для м Lpeaктор
а= 0,5 мГн нн, Ом 650 fh,
1000 fh, fв, кГц кГц 32 34 36 35 37 40 38 41 39 42 40 44 41 45 45 50 46 52 47 53 48 54 49 56 50 57 51 58 52 60 53 61 54 63 55 64

Таблица 1.3. (продолжение)

	ра= 0,1 мГн			а= 0,25 мГн				а= 0,5 мГн	
440 470	ин, Ом 650 1000	440	470	ин, Ом 650	1000	440	470	н, Ом 650	1000
fн, fв, fн, fв,	fн, fв, fн, fв,	fн, fв,	fн, fв,	fн, fв,	fн, fв,	fн, fв,	fн, fв,	fн, fв,	fн, fв,
								fH, fB, κΓu κΓu 106 247 107 252 108 258 109 265 110 271 111 278 112 284 113 291 114 299 115 306 116 314 117 322 118 330 119 338 120 347 121 356 122 366 123 375 124 385 125 396 126 407 127 418 128 430 129 442	
163 210 166 210 164 212 167 212 165 213 168 213 166 215 169 215 167 217 170 217 168 219 171 219 169 221 172 220 170 222 173 222 171 224 174 224 172 226 175 226 173 228 176 228 174 230 177 229 175 232 178 231 177 235 180 235 178 231 182 238 180 241 183 240 181 237 181 237 179 239 182 238 180 241 183 240 181 237 181 237	182 215 213 237 183 216 214 238 184 218 215 240 185 219 216 241 186 221 217 242 187 222 218 243 188 224 219 245 189 225 220 246 190 227 221 247 191 228 222 249 192 230 223 250 193 231 224 252 194 233 225 253 195 235 226 254 196 236 227 256 197 238 228 257 198 239 229 258 199 241 230 260 200 242 231 261 201 244 232 262	136 294 137 299 138 304 139 309 140 314 141 320 142 325 143 331 144 337 145 343 146 349 147 355 148 361 149 368 150 374 151 381 152 388 153 395 154 402 155 409 156 417 157 425 158 432 159 441 160 449 161 457 162 466 163 475 164 484 165 593 167 513 168 523 169 534 170 545 171 556 172 567 173 579 174 591 175 603 176 616 177 629 178 643 179 657 180 672 181 687 182 702 181 687 182 702 181 687 182 702 181 687 182 702 181 687 182 702 181 687 182 702 181 687 182 702 181 687 183 709 184 735 185 753 186 771 187 789 188 809 189 829 190 849 191 871 192 894 193 917 194 942 195 967 196 10000	138	145 230 146 233 147 235 148 238 149 241 150 244 151 246 152 249 153 252 154 255 156 261 157 264 158 267 159 270 160 273 161 276 162 280 163 283 164 286 165 289 169 303 170 306 168 299 169 303 170 306 171 310 171 310 171 313 173 317 174 320 175 324 176 327 177 331 178 335 180 343 181 346 182 350 183 354 181 346 182 350 183 354 184 358 185 362 186 367 187 371 188 375 189 379 190 406 196 411 197 415 198 420 199 425 200 445 201 435 202 440 203 445 204 450 205 455 206 460 207 466 207 465 208 471 209 477 210 488 211 488 212 494 213 500 214 505 215 511 216 517 217 524 218 505 220 543 221 549 222 556	159 210 160 212 161 214 162 214 163 218 164 220 165 222 166 224 167 226 168 228 169 230 170 232 171 234 175 242 176 244 177 246 178 248 179 250 180 252 181 254 182 256 183 258 184 260 185 263 186 265 187 267 188 269 189 271 190 273 191 276 192 278 193 280 194 282 195			131	139 265 140 269 141 273 142 277 143 282 144 286 145 290 147 299 148 303 150 312 151 317 152 322 153 326 154 331 155 336 156 341 157 346 158 352 161 368 352 161 163 379 164 385 165 391 166 397 167 403 168 409 169 416 170 422 171 429 172 436 173 443 174 450 175 457 176

Таблица 1.3. (продолжение)

The color The				Lреактор		мГн						Lреактор		мГн					Lреактор	мГн
Math		4.40						000		110					4	000	110			
14									fн		fu							fu		
2-24 90	кГц	кГц	кГц	кГц	кГц	кГц	кГц	кГц					кГц	кГц	кГц	кГц				
140	242	380	245	372	261	347	292	349					224	569	238	396				
140 150	244			377			294						226	583	240	402				
March 190																				
100	247 248							356					229							
151	249	399	252	390	268	360	299	360					231	620	245	417				
15.5 101	251	405	254	395	270	364	301	363					233	636	247	423				
250 450 250 460 275 274 260 275 274 260 275 274 261 275 274 275	253	410	256	400	272	368	303	366					235	652	249	430				
1.00	255	416	258	405	274	372	305	369					237	669	251	436				
1.00	257	422	260	410	276	376	307	372					239	686	253	442				
201 433 266 421 280 388 211 308 11 30	259	427	262	416	278	380	309	375					241	704	255	449				
263 439 266 427 282 388 311 381 745 741 259 462 264 448 267 472 282 388 311 381 381 364 464	261	433	264	421	280	384	311	378					243	722	257	456				
263 485 286 432 281 392 315 388 147 761 262 469													245							
266													246 247							
288 484 277 446 287 398 388 399 290 792 264 489 290 793 264 489 290 793 264 489 290 793 264 489 290 793 264 489 290 793 264 489 290 793 264 489 290 793 264 489 290 793 264 489 290 793 264 489 291 484 273 277 477 277 477 277 477 277 477 277 477 277 478													248							
270	268	454	271	440	287	398	318	389					250	792	264	480				
272 467 275 452 291 407 322 396 254 877 288 494 274 470 275 476 277 455 203 476 277 476 477 476 477 476	270	460	273	446	289	402	320	393					252	814	266	487				
224 473 277 488 293 411 324 399 256 860 270 501	272	467	275	452	291	407	322	396					254	837	268	494				
276 479 279 480 280 481 296 402 258 885 272 509 777 483 280 460 299 447 227 404 298 882 273 516 279 489 282 472 298 421 339 407 296 524 273 530 281 489 282 472 298 421 333 400 262 397 267 524 281 489 284 478 300 422 333 400 260 287 757 524 281 489 284 488 300 420 333 410 263 595 277 533 284 500 288 481 208 443 335 414 348 448 448 448 448 448 448 448 448 448 448 <t< td=""><td>274</td><td>473</td><td>277</td><td>458</td><td>293</td><td>411</td><td>324</td><td>399</td><td></td><td></td><td></td><td></td><td>256</td><td>860</td><td>270</td><td>501</td><td></td><td></td><td></td><td></td></t<>	274	473	277	458	293	411	324	399					256	860	270	501				
278 486 281 469 297 419 328 405 260 911 274 516 281 496 282 475 232 475 232 475 232 281 496 284 473 300 426 313 410 325 415 325 283 300 286 483 301 483 333 414 265 277 528 283 300 286 483 302 430 430 333 414 265 277 528 284 302 286 487 303 436 335 412 285 301 286 487 303 436 335 412 286 311 291 300 476 335 417 287 316 290 497 306 439 335 410 288 311 291 300 507 443 338 424 288 312 281 291 300 507 443 338 424 288 313 291 303 305 305 307 445 338 424 288 313 291 303 305 307 445 346 425 291 353 294 395 313 311 450 345 439 291 353 294 295 313 311 450 345 439 292 353 305 307 307 445 346 439 293 354 368 369 377 388 294 355 348 349 345 345 345 295 344 298 392 313 414 415 344 427 296 348 348 349 348 349 297 351 301 313 445 445 449 298 351 311 450 445 449 298 351 311 450 445 449 299 352 314 456 445 434 299 352 314 456 445 434 299 352 314 456 445 439 299 353 307 353 313 460 447 479 299 354 349 349 349 301 366 304 342 320 470 351 444 302 377 380 487 387 303 378 377 380 487 387 304 378 377 380 487 387 305 387 398 398 398 306 388 307 353 324 377 307 348 349 348 349 308 349 349 349 349 309 377 380 380 380 380 380 300 300 300 300 300 300 301 301 303 304 305 302 303 303 304 305 303 303 305 305 305 304 307 307 307 308 305 307 308 308 307 308 309 309 309 308 309 309 309 309 309 309 309 309 309 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300	276	479	279	463	295	415	326	402					258	885	272	509				
280 492 283 475 299 425 330 409 267 977 776 524 281 492 283 478 300 428 331 410 265 951 775 528 282 8052 286 484 302 480 333 415 266 1000 280 539 283 902 286 484 302 480 333 415 266 1000 280 539 284 506 287 487 303 432 334 415 266 1000 280 539 285 507 288 494 304 434 335 417 266 1000 280 539 286 519 291 500 507 441 384 445 445 445 288 519 291 500 507 441 384 443 444 444 444 444 444 289 522 292 203 388 443 389 424 428 428 438 439 290 537 296 516 312 452 454 434 434 434 434 291 538 449 303 449 304 449 304 449 449 449 288 519 291 500 507 441 388 442 449 449 449 288 519 291 500 507 441 388 442 449 449 449 289 522 523 538 484 438 449 449 449 449 449 280 537 296 516 512 449 449 449 449 449 280 537 296 516 312 452 454 449 449 449 280 537 296 516 312 452 454 449 449 280 537 296 516 312 452 454 449 449 280 537 296 516 312 452 454 449 280 537 296 518 313 458 444 434 297 551 500 500 500 500 280 538 530 530 530 449 449 280 537 296 516 312 472 354 280 538 539 318 318 459 449 449 280 537 296 516 312 472 352 381 538 538 339 348 449 381 538 538 538 538 449 381 538 538 538 548 449 381 538 538 538 538 449 381 538 538 538 538 449 381 538 538 538 538 548 449 381 538 538 538 538 548 449 382 539 538 538 538 538 548 449 383 538 538 538 538 539 548 449 384 700 700 700 700 700 700 700 385 538 538 538 538 548 449 385 539 538 539 548 449 386 539 539 538 538 539 548 449 3	278	486	281	469	297	419	328	405					260	911	274	516				
282 499 285 481 301 428 332 412 264 965 278 531 283 502 286 484 302 430 333 441 266 1000 281 535 284 500 287 497 306 431 333 415 285 512 293 494 597 306 497 307 497 3	280	492	283	475	299	423	330	409					262	937	276	524				
284 506 287 487 303 432 334 415	282	499	285	481	301	428	332	412					264	965	278	531				
286 512 289 494 505 436 336 439 37 420 282 547 288 513 291 500 300 444 338 424 228 511 291 500 300 404 338 424 228 511 291 500 300 444 338 424 228 511 291 500 300 404 318 424 228 511 291 500 300 404 318 424 228 519 286 514 291 500 300 404 318 427 288 515 514 288 519 288 519 518 288 519 518 289 518 518 519 518 518 518 519 518 518 519 518 518 518 519 518 518 518 519 518 518 518 518 518 518 519 518 518 518 518 518 518 518 518 518 518	284	506	287	487	303	432	334	415							280	539				
288 519 291 500 507 441 538 422 284 555 289 523 292 503 508 445 339 424 280 523 292 505 508 309 448 340 340 427 281 533 292 505 508 309 448 340 340 427 282 524 525 529 283 527 528 528 528 529 284 541 292 512 513 312 452 543 450 288 576 285 576 285 576 286 544 298 522 514 456 545 444 422 295 580 297 515 10 502 579 516 517 447 429 298 527 517 518 500 579 518 518 468 549 440 299 529 526 518 48 48 48 48 48 48 48 48 48 48 48 48 48																				
289 523 292 503 508 443 539 424 285 559 290 526 564 291 530 294 509 510 447 541 427 286 564 291 530 294 509 510 447 541 427 287 568 291 531 510 294 519 511 450 343 429 389 577 293 537 789 511 511 450 343 429 389 577 294 541 297 519 313 445 45 344 432 290 580 295 544 299 526 515 459 346 455 457 297 551 500 529 316 461 347 437 437 293 593 298 555 301 532 317 463 348 439 299 599 599 599 599 599 599 599 599 59																				
291 530 294 509 510 447 341 427 287 568 572 292 533 295 513 311 450 342 429 288 572 294 541 297 512 313 434 430 289 576 296 548 299 326 315 459 346 445 299 589 297 551 300 529 316 461 347 477 295 593	289														285					
294 541 297 519 313 646 312 452 343 4300 289 576 295 544 297 519 313 454 452 290 580 295 544 298 522 314 456 545 434 432 296 548 299 526 315 459 346 435 297 511 300 523 317 463 346 435 299 559 300 523 317 463 347 437 329 399 399 399 399 399 399 399 399 399	291	530	294	509	310	447	341	427							287	568				
295 544 298 522 314 456 345 434 291 589 296 548 299 526 315 459 346 455 292 589 298 555 301 532 317 463 348 439 293 593 299 353 302 353 311 463 349 440 296 600 301 363 313 463 349 440 296 600 301 363 314 463 349 440 296 600 301 362 341 463 349 441 296 600 302 570 305 546 321 472 552 445 298 616 304 578 307 553 323 477 554 449 300 625 305 582 307 560 382<	293	537	296	516	312	452	343	430							289	576				
299 551 300 529 316 461 347 437 293 593 294 598 295 501 532 317 463 348 439 294 598 602 300 563 318 465 349 440 295 602 300 563 318 465 349 440 296 607 301 566 304 542 320 470 351 444 297 611 302 570 305 566 304 542 320 477 351 444 297 601 305 568 349 322 475 353 447 300 603 305 353 343 479 354 447 300 623 300 635 308 353 343 479 354 449 300 623 300 663 300 663 300 663 300 663 300 663 <td>295</td> <td>544</td> <td>298</td> <td>522</td> <td>314</td> <td>456</td> <td>345</td> <td>434</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>291</td> <td>585</td> <td></td> <td></td> <td></td> <td></td>	295	544	298	522	314	456	345	434							291	585				
299 559 302 536 318 465 349 442 295 607 301 566 504 542 320 470 351 444 297 611 302 570 505 546 321 472 352 445 299 616 303 574 306 549 322 475 353 447 299 620 304 578 307 553 323 477 354 449 300 623 305 582 308 556 324 472 356 452 350 634 308 583 308 556 324 473 354 452 350 634 308 583 308 556 324 472 358 456 452 301 634 309 597 111 657 327 486 359 458 30	297	551	300	529	316	461	347	437							293	593				
301 566 304 542 320 470 351 444 302 570 305 546 321 472 352 445 298 616 303 574 306 549 322 477 355 447 299 620 304 578 307 553 323 477 354 449 300 625 305 582 308 556 324 479 355 451 301 629 307 589 310 563 326 484 357 454 303 639 308 593 311 567 328 489 359 458 305 648 310 601 314 577 330 493 361 461 307 688 311 605 314 584 332 498 363 463 306 663 311<	299	559	302	536	318	465	349	440							295	602				
304 574 306 549 322 475 535 447 299 620 304 578 307 553 323 477 554 449 300 625 305 582 308 556 324 479 355 451 301 629 306 585 309 560 325 482 356 482 306 634 307 589 310 563 326 484 557 454 303 639 308 593 311 567 327 486 558 456 304 644 509 597 512 570 328 489 356 484 459 306 653 311 605 314 418 577 330 498 463 307 658 312 609 315 581 331 613 316 663 33	301	566	304	542	320	470	351	444							297	611				
305 582 308 556 324 479 355 451 301 629 306 585 309 560 325 482 356 452 302 634 307 589 310 563 326 484 357 454 303 639 308 593 311 567 327 486 588 456 304 644 309 597 312 570 328 489 359 458 306 653 311 605 314 577 330 493 361 461 307 658 512 609 315 581 331 613 316 668 310 6673 314 618 317 488 335 501 364 466 310 668 317 630 320 599 336 508 367 471 312 6	303	574	306	549	322	475	353	447							299	620				
507 S89 310 563 326 484 557 454 508 593 311 567 327 486 588 456 504 644 309 597 312 570 328 489 359 458 305 648 310 601 313 574 329 491 360 461 307 658 311 605 314 577 331 496 362 463 308 663 312 609 315 581 331 496 362 463 309 668 314 618 317 588 335 501 364 466 309 668 315 622 318 592 334 503 365 468 311 678 316 622 318 592 334 503 365 466 311 673 317<	305	582	308	556	324	479	355	451							301	629				
309 597 312 570 328 489 359 458 310 601 313 574 529 491 360 459 311 605 314 577 330 493 361 461 307 658 312 609 315 581 331 461 317 588 333 501 464 313 613 316 584 332 498 363 464 309 668 314 618 317 588 333 501 364 466 310 673 316 626 519 596 535 505 366 470 312 683 317 630 320 599 336 508 471 313 688 318 634 321 603 337 510 368 473 314 693 320 643 323<	307	589	310	563	326	484	357	454							303	639				
311 605 314 577 330 493 361 461 307 658 312 609 315 581 331 496 362 463 308 663 313 613 316 584 332 498 363 464 309 668 314 618 317 588 333 501 364 466 310 673 315 622 318 592 334 503 365 468 311 678 316 626 319 596 335 508 367 471 313 688 318 634 321 603 337 510 368 473 314 693 319 638 322 607 338 513 509 475 315 699 320 643 323 611 339 515 370 477 316 704 321 647 324 434 520 372 480 3	309			570												648				
313 615 316 584 332 498 363 464 314 618 317 588 335 501 364 468 310 673 315 622 318 592 334 503 365 468 311 678 316 626 319 596 355 505 366 470 512 683 318 634 321 603 337 510 368 473 314 693 319 638 322 607 338 513 569 475 314 693 320 643 321 603 337 510 368 475 315 669 320 643 323 611 339 515 370 477 316 704 321 647 324 614 340 518 371 479 317 709 322 651 326 622 342 523 373 480 321 7																				
314 618 317 \$88 333 501 364 466 315 622 318 \$92 334 503 365 468 311 678 316 626 319 \$99 335 \$508 367 471 313 688 317 630 320 \$99 336 \$508 367 471 313 688 319 638 322 607 338 \$515 368 473 314 693 319 638 322 607 338 \$515 370 477 316 704 321 647 324 614 340 \$18 371 479 317 709 322 651 332 618 341 \$20 372 480 318 714 323 656 326 632 342 \$23 374 484 320 725 325 665 328 630 344 \$28 375 486 321 <																				
316 626 319 596 335 505 366 470 312 683 317 630 320 599 336 508 367 471 313 688 319 638 321 603 337 510 368 473 314 693 319 638 322 607 338 513 369 475 315 699 320 643 323 611 339 515 370 477 316 704 321 647 324 614 340 518 371 479 317 709 322 651 325 618 341 520 372 480 318 714 323 656 326 622 342 523 373 482 319 720 324 660 327 626 343 525 374 484 320 725 325 665 328 630 344 523 377 4	314		317	588												673				
318 634 321 603 337 510 368 473 319 638 322 607 338 513 369 475 320 643 323 611 339 515 370 477 316 704 321 647 324 614 340 518 371 479 317 709 322 651 325 618 341 520 372 480 318 714 323 656 326 622 342 523 373 482 319 720 324 660 327 626 343 525 374 484 320 725 325 665 328 630 344 528 375 486 321 731 326 669 329 634 345 530 376 487 322 736 327 674 330 638 346 533 377 489 323 742 3	316	626	319	596	335	505	366	470							312	683				
320 643 323 611 339 515 370 477 321 647 324 614 340 518 371 479 317 709 322 651 325 618 341 520 372 480 318 714 323 656 326 622 342 523 373 482 319 720 324 660 327 626 343 525 374 484 320 725 325 665 328 630 344 528 375 486 321 731 326 669 329 634 345 530 376 487 322 736 327 674 330 638 346 533 377 489 323 742 328 678 331 642 347 535 378 491 324 748 329 683 332 646 348 538 379 493 325 7	318	634	321	603	337	510	368	473							314	693				
322 651 325 618 341 520 372 480 323 656 326 622 342 523 373 482 324 660 327 626 343 525 374 484 325 665 328 630 344 528 375 486 326 669 329 634 345 530 376 487 322 736 327 674 330 638 346 533 377 489 323 742 328 678 331 642 347 535 378 491 324 748 329 683 332 646 348 538 379 493 325 753 331 692 334 654 350 348 496 327 765 332 697 335 658 351 545 382 498<	320	643	323	611	339	515	370	477							316	704				
324 660 327 626 343 525 374 484 325 665 328 630 344 528 375 486 326 669 329 634 345 530 376 487 327 674 330 638 346 533 377 489 328 678 331 642 347 735 378 491 329 683 332 646 348 538 379 493 330 687 333 650 349 540 380 495 331 692 334 654 350 543 381 496 331 692 334 654 350 543 381 496 332 701 336 662 352 548 383 500 334 706 337 666 353 550 384 502 <td>322</td> <td>651</td> <td>325</td> <td>618</td> <td>341</td> <td>520</td> <td>372</td> <td>480</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>318</td> <td>714</td> <td></td> <td></td> <td></td> <td></td>	322	651	325	618	341	520	372	480							318	714				
326 669 329 634 346 530 376 487 327 674 330 638 346 533 377 489 328 678 331 642 347 535 378 491 329 683 332 646 348 538 379 493 320 867 333 650 349 540 380 495 331 692 334 654 350 543 381 496 332 697 335 658 351 545 382 498 333 701 336 662 352 548 383 500 329 776 334 706 337 666 353 550 384 502 335 711 338 670 354 555 556 386 505 337 720 340 679 356 558 387 507 338 725 341 683 357 561 388 509 337 720 340 679 356 558 387 507 338 725 341 683 357 561 388 509 339 730 342 687 358 564 389 511 340 735 343 692 359 566 390 513 340 735 343 692 359 566 390 513 340 735 344 696 360 569 391 515	324	660	327	626	343	525	374	484							320	725				
328 678 331 642 347 535 378 491 329 683 332 646 348 538 379 493 325 753 330 687 333 650 349 540 380 495 326 759 331 692 334 654 350 543 381 496 327 765 332 697 335 668 351 545 382 498 328 771 333 701 336 662 352 548 383 500 329 776 334 706 337 666 353 550 384 502 330 782 335 711 338 670 354 553 385 504 331 788 336 716 339 675 355 556 386 505 332 795 337<	326	669	329	634	345	530	376	487							322	736				
330 687 333 650 349 \$40 380 495 331 692 334 654 350 543 381 496 332 697 335 658 351 545 382 498 333 701 336 662 352 548 383 500 334 706 337 666 353 550 384 502 335 711 338 670 354 553 385 504 336 716 339 675 355 556 386 505 337 720 340 679 356 558 387 507 338 725 341 683 357 561 388 509 339 730 342 687 358 564 389 511 340 735 343 692 359 566 390 513 <td>328</td> <td>678</td> <td>331</td> <td>642</td> <td>347</td> <td>535</td> <td>378</td> <td>491</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>324</td> <td>748</td> <td></td> <td></td> <td></td> <td></td>	328	678	331	642	347	535	378	491							324	748				
332 697 335 688 351 545 382 498 333 701 336 662 352 548 383 500 334 706 337 666 353 550 384 502 335 711 338 670 354 553 385 504 336 716 339 675 355 556 386 505 337 720 340 679 356 558 387 507 338 725 341 683 357 561 388 509 339 730 342 687 358 564 389 511 340 735 343 692 359 566 390 513 341 740 344 696 360 569 391 515	330	687	333	650	349	540	380	495							326	759				
334 706 337 666 553 550 384 502 335 711 338 670 354 553 385 504 336 716 339 675 355 556 386 505 337 720 340 679 356 558 387 507 333 801 338 725 341 683 357 561 388 509 334 807 339 730 342 687 358 564 389 511 335 813 340 735 343 692 359 566 390 513 336 819 341 740 344 696 360 569 391 515 337 826	332	697	335	658	351	545	382	498							328	771				
335 711 338 670 354 553 385 504 336 716 339 675 355 556 386 505 337 720 340 679 356 558 387 507 338 725 341 683 357 561 388 509 339 730 342 687 358 564 389 511 340 735 343 692 359 566 390 513 341 740 344 696 360 569 391 515	334	706	337	666	353	550	384	502							330	782				
337 720 340 679 356 558 387 507 338 725 341 683 357 561 388 509 334 807 339 730 342 687 358 564 389 511 335 813 340 735 343 692 359 566 390 513 341 740 344 696 360 569 391 515 337 826	335	711	338	670	354	553	385	504							331	788				
339 730 342 687 358 564 389 511 335 813 340 735 343 692 359 566 390 513 336 819 341 740 344 696 360 569 391 515 337 826	337	720	340	679	356	558	387	507							333	801				
341 740 344 696 360 569 391 515 337 826	339	730	342	687	358	564	389	511							335	813				
	341	740	344	696	360	569	391	515							337	826				

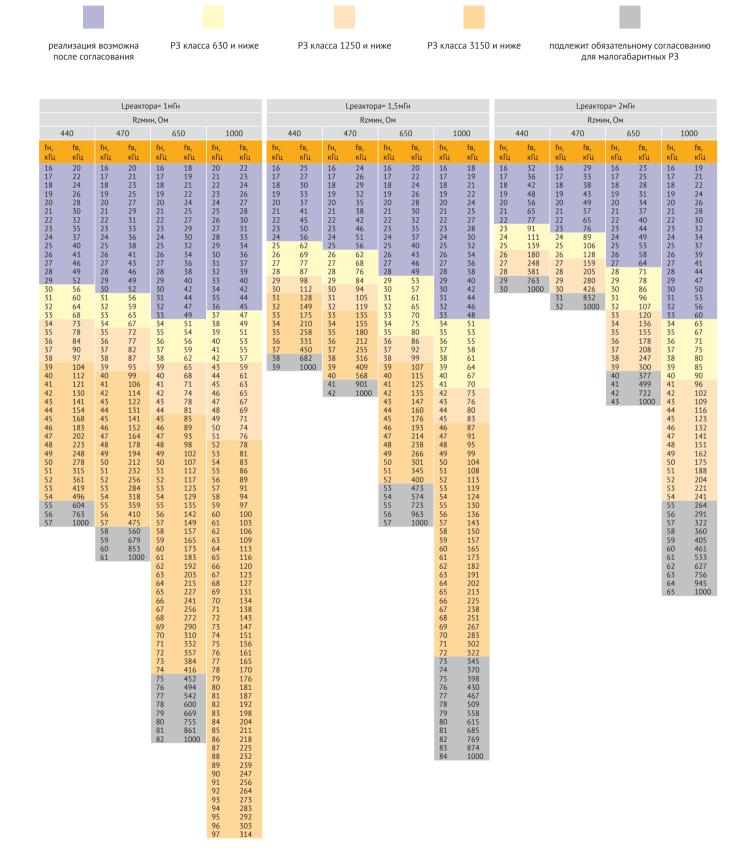

Таблица 1 3 (прололуение)

Таблица 1.3. (продолжение)

		Lpеакто В гм		иГн		
440		Кzм 470	ин, Ом <i>6</i>	550	10	000
fB,	fн,	fB,	fH,	fB,	fH,	fв,
, кГц			кГц	кГц	кГц	кГц
			466 467	921 925	497 498	734 736
			468 469	930 934	499 500	739 741
			470 471	938 942	501 502	743 746
			472	947 951	503	748 751
			473 474	955	504 505	753
			475 476	960 964	506 507	755 758
			477 478	968 973	508 509	760 762
			479 480	977 982	510 511	765 767
			481	986	512	770
			482 483	990 995	513 514	772 774
			484	1000	515 516	777 779
					517 518	782 784
					519	787
					520 521	789 791
					522 523	794 796
					524 525	799 801
					526	804
					527 528	806 809
					529 530	811 814
					531 532	816 819
					533	821
					534 535	824 826
					536 537	829 832
					538 539	834 837
					540 541	839 842
					542	844
						0.47
					543 544	847 850
					544 545	850 852
					544 545 546 547	850 852 855 857
					544 545 546 547 548 549	850 852 855 857 860 863
					544 545 546 547 548 549 550 551	850 852 855 857 860 863 865 868
					544 545 546 547 548 549 550	850 852 855 857 860 863 865
					544 545 546 547 548 549 550 551 552 553 554	850 852 855 857 860 863 865 868 870 873 876
					544 545 546 547 548 549 550 551 552 553 554 555 556	850 852 855 857 860 863 865 868 870 873 876 878
					544 545 546 547 548 549 550 551 552 553 554 555 556 557 558	850 852 855 857 860 863 865 868 870 873 876 878 881 884
					544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560	850 852 855 857 860 863 865 868 870 873 876 878 881 884 884 886 889
					544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559	850 852 855 857 860 863 865 868 870 873 876 878 881 884 886 889
					544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563	850 852 855 860 863 865 870 873 876 878 881 884 884 889 892 895 897
					544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565	850 852 855 867 860 863 865 878 876 878 881 884 886 889 892 895 897 900 903
					544 545 546 547 548 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567	850 852 855 867 863 865 868 873 876 878 881 884 886 889 892 895 897 903 903 905 908
					544 545 546 547 548 549 550 551 552 553 554 555 556 557 562 563 564 565 566	850 852 855 860 863 865 868 870 873 874 881 884 889 892 895 897 900 903 905 908
					544 545 546 547 548 559 550 551 552 553 554 555 556 557 562 563 564 565 566 567 568 569 570	850 852 855 863 863 865 868 870 873 876 881 884 886 889 892 895 903 905 903 905 901 914 914 919
					544 545 546 547 548 550 551 552 553 554 555 556 561 562 563 564 565 564 565 567 568 569 570 571	850 852 855 860 863 865 868 870 873 876 881 884 884 889 900 905 905 905 901 914 919 922
					544 545 546 547 548 559 551 552 553 555 556 560 561 562 563 564 565 568 569 570 571 572 573 574	850 852 855 863 865 865 868 870 878 881 884 886 889 900 903 905 909 909 911 914 919 922 928 928
					544 545 546 547 548 551 551 552 553 554 555 560 561 562 563 564 565 566 567 567 571 572 573 574 575	850 852 855 857 860 863 865 873 876 878 881 884 884 889 905 908 907 908 909 909 909 909 909 909 909 909 909
					544 545 546 547 548 551 551 552 553 554 555 562 563 564 565 565 567 568 570 571 572 573 573 574	850 852 855 860 863 865 870 873 876 878 881 884 889 905 908 907 909 908 909 909 909 909 909 909 909 909
					544 545 546 547 548 559 550 551 552 553 555 556 560 561 562 563 564 565 568 569 570 571 572 573 574 575 577 578	850 852 855 867 866 865 865 868 870 873 878 881 884 889 905 909 905 908 911 916 919 922 925 930 933 939 942
					544 545 546 547 548 551 551 552 553 554 555 560 561 562 563 564 565 566 567 571 572 573 574 575 576 577 578 579 580	850 852 855 857 860 863 865 870 873 884 884 884 889 900 905 908 911 914 919 922 925 930 933 933 934 944 944 947
					544 545 546 547 548 551 551 552 553 554 555 562 563 564 565 565 567 568 570 571 572 573 574 575 575 576 577 578 577 578 577 578 577 578 577 578 577 578 577 578 577 578 577 578 577 578 577 577	850 852 855 860 863 865 870 873 876 878 881 884 889 905 908 909 911 914 919 922 925 928 930 933 933 942 947 950 955
					544 545 546 547 548 559 551 552 553 555 556 560 561 562 563 564 565 568 569 570 571 572 573 574 575 579 580 581	850 852 855 865 865 865 868 870 878 878 881 884 886 889 905 909 909 909 909 911 916 919 922 925 928 930 933 944 947 953
					544 545 546 547 548 551 552 553 554 555 557 558 560 561 562 563 564 565 567 568 569 570 571 572 573 574 577 578 578 579 580 570 571 572 573 574 575 576 577 578 578 578 578 578 578 578	850 852 855 860 863 865 870 873 876 878 881 884 884 889 990 903 905 905 909 911 914 919 922 925 933 933 935 939 942 944 944 947 950 959 962 964
					544 545 546 547 548 551 552 553 554 555 556 557 558 561 562 563 564 565 567 568 570 571 578 572 573 574 575 576 580 581 582 583 584 585 586 587 588 588 587 588 588 587 588 588	850 852 855 857 860 863 868 870 878 878 881 884 889 903 905 908 911 914 919 925 928 933 933 936 942 947 950 953 956 959 962 964 970
					544 545 546 547 548 559 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 573 574 575 578 577 578 579 580 571 577 578 579 579 580 571 572 573 574 575 576 577 578 579 579 579 570 571 572 573 574 575 576 577 578 579 579 579 579 579 579 579 579	850 852 855 857 860 863 865 876 878 8876 8884 886 8892 905 908 911 914 916 919 922 925 933 939 942 959 959 962 964
					544 545 546 547 548 551 552 553 554 555 555 556 557 558 560 561 562 563 564 565 567 568 569 570 571 572 573 574 577 578 579 580 581 581 582 583 584 585 585 586 587 588 587 588 589 580 581 581 582 583 584 585 586 587 588 587 588 589 580 581 581 582 583 584 585 586 587 588 589 580 581 581 582 583 584 585 586 587 588 589 580 581 581 582 583 584 585 586 587 588 589 589 580 580 581 588 588 589 588 589 588 588 588	850 852 855 866 863 865 870 873 886 887 881 884 884 889 905 908 905 905 905 911 914 919 922 928 930 933 939 942 944 947 950 953 954 955 959 962 964 967 970 979
					544 545 546 547 548 551 552 553 554 555 556 557 558 560 570 571 578 579 570 571 578 577 578 577 578 577 578 581 582 583 584 585 587 587 587 588 587 588 588	850 852 855 860 863 865 868 870 873 881 884 884 889 992 905 908 911 914 919 922 928 933 942 944 950 953 956 959 962 964 970 973 976 979 985
					544 545 546 547 548 559 551 552 553 554 555 560 561 562 563 564 565 566 567 577 578 577 578 579 580 577 578 579 580 571 572 573 574 575 576 577 578 579 580 577 578 579 580 571 572 573 574 575 576 577 578 579 580 577 578 579 579 579 579 570 570 571 572 573 574 575 576 577 578 579 579 579 570 570 570 570 571 572 573 574 575 576 577 578 579 579 570 570 570 571 572 573 574 575 576 577 578 579 579 580 577 578 579 579 580 579 579 579 580 579 579 579 579 579 579 579 579	850 852 855 857 860 863 865 870 873 876 878 884 886 889 903 903 909 903 911 914 916 917 919 922 925 936 937 937 938 939 942 944 947 950 953 953 953 954 955 957 973 975 976 977 977 978 978 978 978 978 978 978 978
					544 545 546 547 548 551 552 553 554 555 556 567 568 569 567 577 578 577 578 578 579 580 571 572 573 574 575 578 577 578 578 578 578 578	850 852 855 860 863 865 870 873 876 878 881 884 889 995 905 908 905 905 909 911 914 919 922 925 933 933 933 934 942 944 947 950 959 964 967 979 979 979 982 988

		L	реактора	иГн		Lpeaктора= 0,5 мГн										
			Rzми	н, Ом				Rzмин, Ом								
4	140	4	70	6	50	10	000	4	40	4	70	6	50	10	000	
fн, кГц									fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	

Таблица 1.4. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реактора 1 мГн, 1.5 мГн, 2 мГн в зависимости от минимальной допустимой величины активной составляющей полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для трехконтурной схемы настройки ЭН

Таблица 1.4. (продолжение)

	Lреакто	ра= 1мГн						Lреакто	pa= 1,5 N	ιГн						Lреакто	ра= 2м	Гн		
	Rzmi	ин, Ом						Rzм	ин, Ом							Rzmi	ин, Ом			
440	470	650	1	000	440			470		650		1000		440		470		650	1	000
	fн, fв, кГц кГц	fн, fв, кГц кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц	fн, кГц	fв, кГц
			98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	325 337 350 363 377 393 408 425 443 483 505 529 555 583 613 645 681																

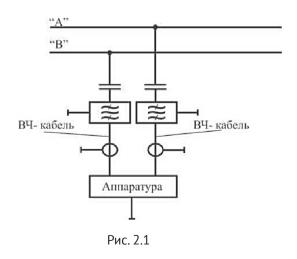
Таблица 2.1. Основные технические характеристики фильтра присоединения ФП с вентильным разрядником

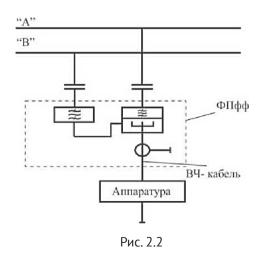
Обозначение	Диапазон рабочих частот, кГц	Емкость конденсатора связи, нФ	Входное сопротивление ВЛ, Ом	Напряжение ВЛ, кВ	Обозначение	Диапазон рабочих частот, кГц	Емкость конденсатора связи, нФ	Входное сопротивление ВЛ, Ом	Напряжение ВЛ, кВ
ФП (20-29)/4400 УХЛ1	20-29				ФП (20-26)/4650 УХЛ1	20-26			
ФП (24-40)/4400 УХЛ1	24-40	4400	450	7.5	ФП (24-34)/4650 УХЛ1	24-34			
ФП (36-90)/4400 УХЛ1	36-90	4400	450	35	ФП (28-42)/4650 УХЛ1	28-42	4650	310	EOO
ФП (56-1 000)/4400 УХЛ1	56-1000				ФП (36-63)/4650 УХЛ1	36-63	4650	310	500
ФП (36-50)/2200 УХЛ1	36-50				ФП (50-127)/4650 УХЛ1	50-127			
ФП (41-64)/2200 УХЛ1	41-64				ФП (75-1 000)/4650 УХЛ1	75-1000			
ФП (47-80)/2200 УХЛ1	47-80	2200			ФП (20-23)/3000 УХЛ1	20-23			
ФП (74-190)/2200 УХЛ1	74-190				ФП (24-29)/3000 УХЛ1	24-29			
ФП (110-1000)/2200 УХЛ1	110-1000		450	110	ФП (28-35)/3000 УХЛ1	28-35			
ФП (20-38)/6400 УХЛ1	20-38				ФП (32-41)/3000 УХЛ1	32-41			
ФП (24-56)/6400 УХЛ1	24-56	6400			ФП (36-48)/3000 УХЛ1	36-48	7000	200	750
ФП (36-600)/6400 УХЛ1	36-600	6400			ФП (45-66)/3000 УХЛ1	45-66	3000	280	750
ФП (44-1000)/6400 УХЛ1	44-1000				ФП (50-77)/3000 УХЛ1	50-77			
ФП (20-26)/3200 УХЛ1	20-26				ФП (60-103)/3000 УХЛ1	60-103			
ФП (24-34)/3200 УХЛ 1	24-34				ФП (80-180)/3000 УХЛ1	80-180			
ФП (28-42)/3200 УХЛ1	28-42	7200	450	220	ФП(125-1000)/3000 УХЛ1	125-1000			
ФП (36-63)/3200 УХЛ1	36-63	3200	450	220	ФП (16-28)/7500 УХЛ1	16-28			
ФП (50-124)/3200 УХЛ1	50-124				ФП (20-40)/7500 УХЛ1	20-40	7500	550	Трос
ФП (71-1000)/3200 УХЛ1	71-1000				ФП (36-500)/7500 УХЛ1	36-500			
ФП (20-33)/7000 УХЛ1	20-33				ФП (16-28)/17500 УХЛ1	16-28			
ФП (24-46)/7000 УХЛ1	24-46	7000	770	770	ФП (20-40)/17500 УХЛ1	20-40	47500	240	Рас- щеп-
ФП (36-125)/7000 УХЛ1	36-125	7000	330	330	ФП (77, 400) (47,500) УСВА	76.400	17500	240	лен- ный трос
ФП (50-1000)/7000 УХЛ1	50-1000				ФП (36-400)/17500 УХЛ1	36-400			трос

Таблица 2.2. Основные технические характеристики фильтра присоединения ФП с ограничителем перенапряжения (ОПН) со стороны ввода «Линия»

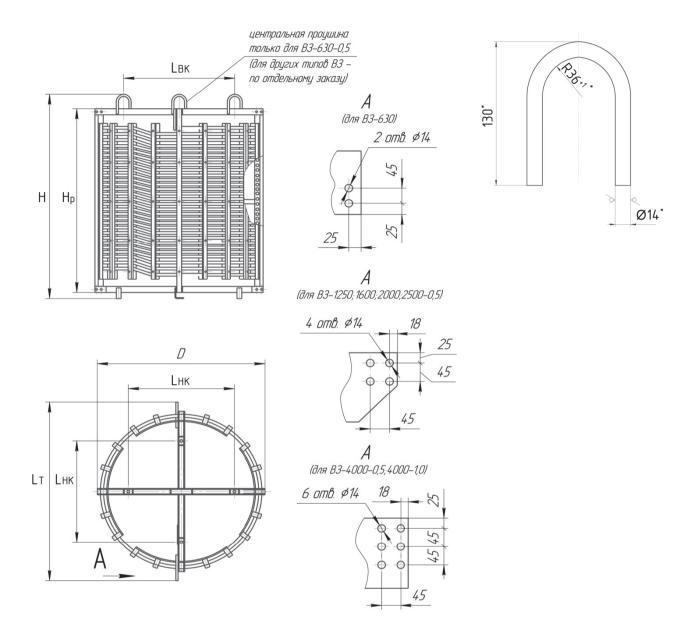
Обозначение	Диапазон рабочих частот, кГц	Емкость конденса- тора связи, пФ	Входное сопротив- ление ВЛ. Ом	Напряжение ВЛ, кВ
ФП (25-45)/4400 УХЛ1	25-45			
ФП (32-63)/4400 УХЛ1	32-63			
ФП (37-86)/4400 УХЛ1	37-86			
ФП (42-122)/4400 УХЛ1	42-122	4400	450	35
ФП (47-195)/4400 УХЛ1	47-95			
ФП (52-270)/4400 УХЛ1	52-270			
ФП (63-1000)/4400 УХЛ1	63-1000			
ФП (22-46)/6400 УХЛ1	22-46			
ФП (24-56)/6400 УХЛ1	24-56			
ФП (28-78)/6400 УХЛ1	28-78			
ФП (32-129)/6400 УХЛ1	32-129		450	110
ФП (36-246)/6400 УХЛ1	36-246	6400		
ФП (38-288)/6400 УХЛ1	38-288			
ФП (42-342)/6400 УХЛ1	42-342			
ФП (46-1000)/6400 УХЛ1	46-1000			
ФП (24-32)/3200 УХЛ1	24-32			
ФП (27-37)/3200 УХЛ1	27-37			
ФП (31-44)/3200 УХЛ1	31-44			
ФП (34-50)/3200 УХЛ1	34-50			
ФП (37-60)/3200 УХЛ1	37-60	7200	450	
ФП (44-78)/3200 УХЛ1	44-78	3200	450	220
ФП (59-151)/3200 УХЛ1	59-151			
ФП (68-208)/3200 УХЛ1	68-208			
ФП (75-295)/3200 УХЛ1	75-295			
ФП (86-1000)/3200 УХЛ1	86-1000			
ФП (36-42)/2140 УХЛ1	36-42			
ФП (40-48)/2140 УХЛ1	40-48			
ФП (44-53)/2140 УХЛ1	44-53			
ФП (48-59)/2140 УХЛ1	48-59			
ФП (53-68)/2140 УХЛ1	53-68			
ФП (59-78)/2140 УХЛ1	59-78	2140	330	330
ФП (68-98)/2140 УХЛ1	68-98			
ФП (78-120)/2140 УХЛ1	78-120			
ФП (97-177)/2140 УХЛ1	97-177			
ФП (119-260)/2140 УХЛ1	119-260			
ФП (176-1000)/2140 УХЛ1	176-1000			

Таблица 2.2. (продолжение)


Обозначение	Диапазон рабочих частот, кГц	Емкость конденса- тора связи, пФ	Входное сопротив- ление ВЛ. Ом	Напряжение ВЛ, кВ
ФП (24-42)/7000 УХЛ1	24-42			
ФП (31-73)/7000 УХЛ1	31-73			
ФП (36-112)/7000 УХЛ1	36-112	7000	330	330
ФП (41-182)/7000 УХЛ1	41-182	_		
ФП (49-1000)/7000 УХЛ1	49-1000			
ФП (20-26)/4650 УХЛ	20-26			
ФП (23-30)/4650 УХЛ	23-30		310	500
ФП (26-36)/4650 УХЛ	26-36			
ФП (30-44)/4650 УХЛ1	30-44	4650		
ФП (36-62)/4650 УХЛ1	36-62	4650		
ФП (44-86)/4650 УХЛ1	44-86			
ФП (62-230)/4650 УХЛ1	62-230			
ФП (80-1000)/4650 УХЛ1	80-1000			


Таблица 2.3. Фильтры присоединения для подключения по схеме «фаза-фаза»

Обозначение	Диапазон рабочих частот, кГц	Емкость конденса- тора связи, пФ	Входное сопротив- ление ВЛ. Ом	Напряжение ВЛ, кВ
ФПфф (20-25)/4650 УХЛ1	20-25			
ФПфф (24-32)/4650 УХЛ1	24-32			
ФПфф (28-40)/4650 УХЛ1	28-40			
ФПфф (36-58)/4650 УХЛ1	36-58	4650	275	500
ФПфф (54-130)/4650 УХЛ1	54-130			
ФПфф (62-210)/4650 УХЛ1	62-210			
ФПфф (80-1000)/4650 УХЛ1	80-1000			


Фильтры присоединения предназначены для подключения по схеме «фаза-фаза» (ФПфф) с Z.л=275 Ом при наличии на входе аппаратуры связи дифференциального трансформатора (Рис. 2.1), либо включают в себя дифференциальный трансформатор (Рис. 2.2).

Фильтры присоединения могут быть изготовлены для совместной работы с конденсаторами связи и емкостными трансформаторами напряжения другой емкости, не указанной в таблице, и с другими диапазонами частот.

Габаритно-присоединительные характеристики оборудования

H_P — высота ВЗ без учета кронштейнов

Н – полная высота ВЗ

 L_T — осевое расстояние между крайними точками контактных пластин

D — диаметр B3, без учета контактных пластин

Lвк — расстояние между центрами верхних кронштейнов B3

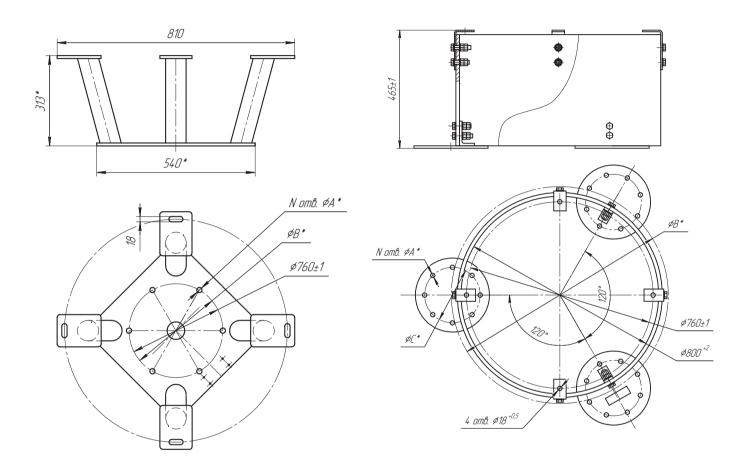

Lнк — расстояние между центрами нижних кронштейнов B3

Рис. 3.1 Габаритно-присоединительные характеристики высокочастотных заградителей на токи от 630 до 4000 A, а также B3-200-2,5 УХЛ 1

^{*} размер для справки

Таблица 3.1. Габаритно-присоединительные характеристики высокочастотных заградителей

Тип ВЗ	Нр, мм	Lт, мм	L вк, мм	L нк, мм
ВЗ-630-0,25 УХЛ1	863	1180	700	760
В3-630-0,5 УХЛ1	1320	1180	700	760
ВЗ-630-0,5 УД УХЛ1	1042	1110	700	760
ВЗ-630-0,5 Д УХЛ1	585	1280	700	760
ВЗ-630-1,0 УХЛ1	1500	1515	800	760
ВЗ-1250-0,1 УХЛ1	935	1216	700	760
ВЗ-1250-0,25 УХЛ1	1110	1336	700	760
ВЗ-1250-0,5 УХЛ1	1410	1516	700	760
ВЗ-1250-0,5 Д УХЛ1	1410	1516	700	760
ВЗ-1250-1,0 УХЛ1	1500	1730	800	760
ВЗ-1250-1,0 Д УХЛ1	1500	1730	800	760
ВЗ-1250-1,5 УХЛ1	1500	1950	800	760
В3-1250-2,0 М УХЛ1	1680	1680	700	760
В3-2000-0,1 Д УХЛ1	935	1326	700	760
ВЗ-2000-0,25 УХЛ1	1110	1366	700	760
ВЗ-2000-0,5 УХЛ1	1385	1392	800	760
ВЗ-2000-0,5 Д УХЛ1	1550	1806	800	760
ВЗ-2000-1,0 УХЛ1	1500	1730	800	760
ВЗ-2000-1,5 УХЛ1	1608	2040	800	760
ВЗ-2000-2,0 УХЛ1	3000	1730	800	760
ВЗ-3150-0,1 УХЛ1	935	1466	700	760
ВЗ-3150-0,5 УХЛ1	1450	1806	800	760
В3-4000-0,1 УХЛ1	935	1466	700	760
ВЗ-4000-0,5 УХЛ1	1450	1806	800	760
ВЗ-100-0,5-5-В УХЛ1	640	870	612	
ВЗ-200-0,5-5-В УХЛ1	800	820	590	
ВЗ-200-1,0-5-В УХЛ1	1200	900	610	
В3-400-0,5-10-В УХЛ1	800	820	590	
В3-400-1,0-10-В УХЛ1	1200	900	610	
В3-630-0,25-16-В УХЛ1	620	820	610	
В3-630-0,5-16-В УХЛ1	800	900	610	
В3-630-0,5-20-В УХЛ1	800	900	610	
В3-630-0,5-16-2Н УХЛ1	800	900	520	
В3-630-0,5-20-2Н УХЛ1	850	900	520	Отсутствует, ВЗ ком-
ВЗ-630-0,5-31,5-2Н УХЛ1	920	900	520	плектуются прижимной шайбой, позволяющей
В3-630-0,5-40-2Н УХЛ1	920	1020	520	устанавливать ВЗ
В3-630-1,0-16-В УХЛ1	1450	900	610	на опоры с различным присоединением
В3-630-2,0-16-В УХЛ1	1600	1370	1010	присосдинением
ВЗ-1250-0,25-31,5-В УХЛ1	850	960	610	
ВЗ-1250-0,5-31,5-В УХЛ1	1250	1180	840	
ВЗ-1250-0,5-40-В УХЛ1	1250	1180	840	
ВЗ-1250-1,0-31,5-В УХЛ1	1350	1430	1010	
ВЗ-2000-0,25-40-В УХЛ1	1000	1230	840	
ВЗ-2000-0,5-40-В УХЛ1	1250	1430	1010	
ВЗ-2000-0,5-50-В УХЛ1	1250	1430	1010	
ВЗ-2000-1,0-40-В УХЛ1	1850	1430	1010	

Максимально допустимый вес ВЗ — 600 кг

Максимально допустимый вес $B3 - 1500 \ \mathrm{kr}$

Рис. 3.2. Пьедестал универсальный для установки высокочастотных заградителей на опорных конструкциях (АВЛБ.301313.013 СБ)

Рис. 3.3. Пьедестал для установки высокочастотного заградителя на трех шинных опорах (АВЛБ.301313.012)

^{*} размеры задаются, исходя из типа опорной конструкции

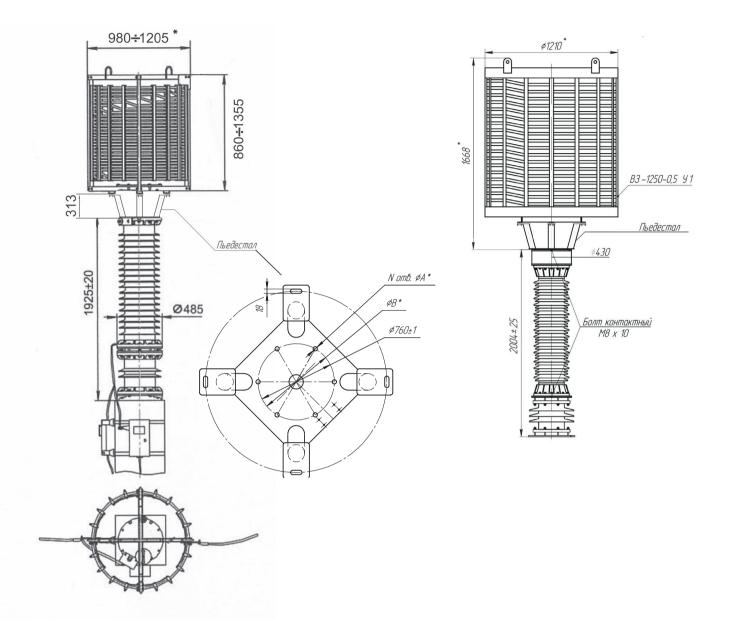
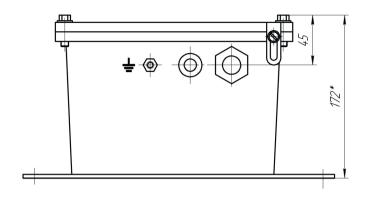



Рис. 3.4. Установка заградителей В3-630, В3-1250, В3-2000 на конденсатор связи усиленного исполнения СМА - 110/√3 - 6,4 УХЛ1.

Рис. 3.5. Установка заградителей В3-630, В3-1250, В3-2000 на конденсатор связи СМПУ (СМПБУ) – 110/√3 – 6,4 УХЛ1.

^{*} размеры задаются, исходя из типа опорной конструкции

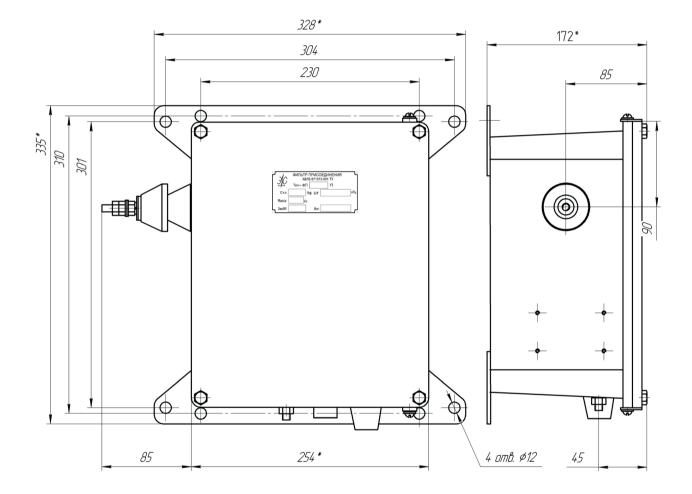
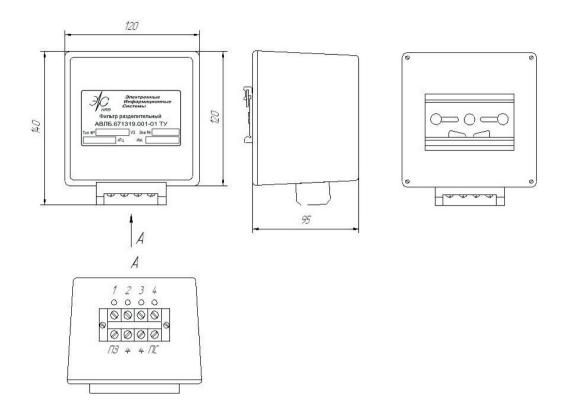



Рис. 3.6. Габаритно-присоединительный чертеж фильтра присоединения ФП.

^{*} размеры даны для справки

Исполнение 1 (способ подключения ВЧ кабеля — клеммная колодка).

Исполнение 2 (способ подключения ВЧ кабеля — высокочастотный разъем СР75).

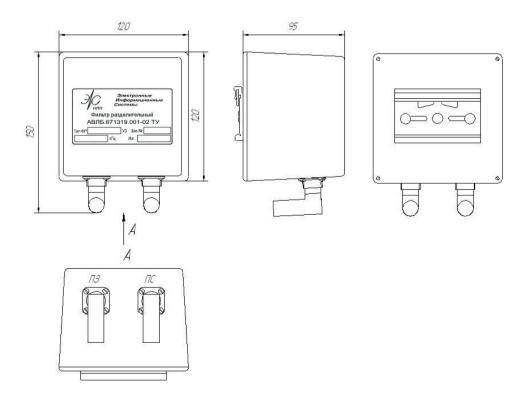


Рис. 3.7. Габаритно-присоединительные чертежи разделительного фильтра РФ.

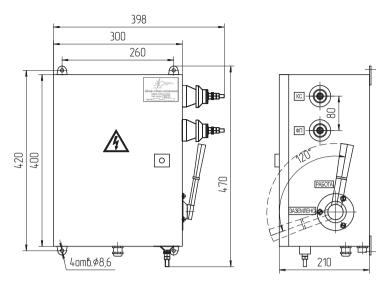


Рис. 3.8. Габаритно-присоединительный чертеж ШОН-301С.

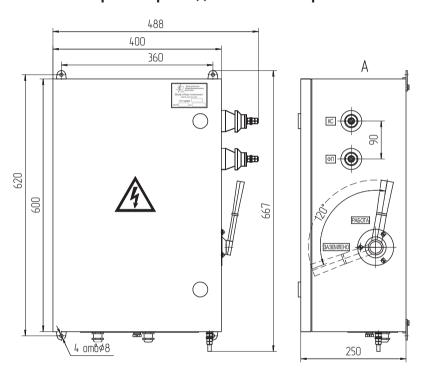


Рис. 3.9. Габаритно-присоединительный чертеж ШОН-303П.

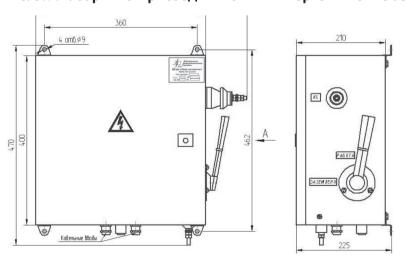


Рис. 3.10. Габаритно-присоединительный чертеж Фильтр-ШОН.

СОДЕРЖАНИЕ

О компании	3
Комплекс ВЧ связи	4
Высокочастотные заградители серии В3	5
Элемент настройки серии ЭН	7
Инновационный заградитель	8
Монолитный заградитель	9
Технические характеристики высокочастотных заградителей серии ВЗВ	10
Условное обозначение высокочастотного заградителя нового поколения	11
Фильтры присоединения серии ФП	12
Разделительные фильтры серии РФ	13
Шкафы отбора напряжений серии ШОН	14
Фильтр присоединения со встроенными функциями	
шкафа отбора напряжения (Фильтр-ШОН)	15
Пьедестал универсальный	16
Эквивалент реактора высокочастотного заградителя универсальный (ЭРВЗУ)	16
Аппаратура АДАСЭ-БК	17
Конденсаторы связи	19
ПВЗУ-Е	24
АКА «КЕДР»	24
КЕДР-2.0	25
ЦВК-16	26
АК «ТРИТОН»	27
АКСТ «Линия-Ц»	27
Оконечный резистор РО-75/100	28
УСПД-ВЛ-М	28
Кабель РК 75-9-12	29
Разъединители РВЗ, РВФЗ, РВО, РВФ внутренней установки	30

ПРИЛОЖЕНИЯ

Таблицы и графики для определения частотных диапазонов.	
Характеристики оборудования. Чертежи	31
Приложение 1	
Формулы для расчета диапазонов частот заграждения высокочастотных заградителей	32
Таблица 1.1. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реактора 0.1 мГн, 0.25 мГн, 0.5 мГн в зависимости от минимальной допустимой величины активной составляющей полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для двухконтурной схемы настройки ЭН	33
Таблица 1.2. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реакто 1 мГн, 1.5 мГн, 2 мГн в зависимости от минимальной допустимой величины активной составляющей полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для двухконтурной схемы настройки ЭН	
Таблица 1.3. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реакто 0.1 мГн, 0.25 мГн, 0.5 мГн в зависимости от минимальной допустимой величины активной составляюш полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для трехконтурной схемы настройки ЭН	цей
Таблица 1.4. Диапазоны частот заграждения высокочастотных заградителей с индуктивностью реакто 1 мГн, 1.5 мГн, 2 мГн в зависимости от минимальной допустимой величины активной составляющей полного сопротивления в полосе заграждения 440 Ом, 470 Ом, 650 Ом, 1000 Ом для трехконтурной схемы настройки ЭН	
Приложение 2	
Таблица 2.1. Основные технические характеристики фильтра присоединения ФП с вентильным разрядником	48
Таблица 2.2. Основные технические характеристики фильтра присоединения ФП с ограничителем перенапряжения (ОПН) со стороны ввода «Линия»	
Таблица 2.3. Фильтры присоединения для подключения по схеме «фаза-фаза»	50
Приложение 3	
Габаритно-присоединительные характеристики оборудования	51
Габаритно-присоединительные характеристики высокочастотных заградителей на токи от 630 до 4000 A, а также ВЗ-200-2,5 УХЛ 1	51
Таблица 3.1. Габаритно-присоединительные характеристики высокочастотных заградителей	52
Пьедестал универсальный для установки высокочастотных заградителей на опорных конструкциях (АВЛБ.301313.013 СБ)	53
Пьедестал для установки высокочастотного заградителя на трех шинных опорах (АВЛБ.301313.012)	53
Установка заградителей В3-630, В3-1250, В3-2000	
на конденсатор связи усиленного исполнения СМА - 110/√3 - 6,4 УХЛ1	54
Установка заградителей В3-630, В3-1250, В3-2000 на конденсатор связи СМПУ (СМПБУ) – 110/√3 – 6,4 УХЛ1	54
Габаритно-присоединительный чертеж фильтра присоединения ФПФП	55
Габаритно-присоединительные чертежи разделительного фильтра РФРФ.	56
Габаритно-присоединительный чертеж шкафа отбора напряжения ШОН-301С ШОН-301С	57
Габаритно-присоединительный чертеж шкафа отбора напряжения ШОН-303П	
Габаритно-присоелинительный чертеж Фильтр-ШОН	57

Подготовлено к печати 15.08.2023